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Site response analysis is crucial to define the seismic hazard and distribution of damage during earth-
quakes. The equivalent-linear (EQL) is a numerical method widely investigated and used for site response
analysis. Because several sources of uncertainty are involved in this type of analysis, parameters defining
the numerical models need to be identified from in-situ measurements. In this paper, a Bayesian infer-
ence method to estimate the expected values and covariance matrix of the model parameters is pre-
sented. The methodology uses data from downhole arrays recorded during earthquakes. Two
numerical applications show the good performance and prediction capabilities of the proposed approach.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Near surface geological site conditions have a predominant role
in defining the characteristics of the ground surface motion during
earthquakes, and therefore, in the damage distribution. The
changes in the amplitude and frequency content of the ground sur-
face motion due to topographic effects and/or characteristics of the
soil deposits, referred to as site effects, define the seismic hazard
and have a direct influence on the behavior of structures during
earthquakes. A site response analysis aims at estimating the
ground motion at the surface given the seismic motion at the bed-
rock and the properties of the soil profile [1]. If topographic and
basin effects are not significant, one-dimensional (1D) analysis
(i.e., assuming horizontal soil layers, boundaries of infinite lateral
extension, and vertically propagating shear waves) has proved ade-
quate to model the propagation of the seismic waves through the
soil profile (e.g., [1]).

Various numerical methods for 1D site response analysis,
including the time-domain nonlinear (NL) method (e.g., [2]) and
the frequency-domain equivalent-linear (EQL) method, have been
proposed and investigated. The EQL method has been widely used
in both research and engineering practice (e.g., [3,4]) due to its
simplicity, flexibility, and robustness [2]. Research efforts have
focused in pointing out limitations on the NL and the EQL methods
and on comparing site response analyses using both methods, with
numerically simulated data (e.g., [5,6]) and experimental data from
downhole arrays [7,8].

A crucial aspect in site response analysis is the several sources
of uncertainty involved in the phenomenon [4], such as model
parameters, input motion, and modeling errors (e.g., 1D represen-
tation and soil constitutive models assumptions). Particularly,
among model parameters, those related to the soil profile (e.g.,
shear wave velocity and thickness of soil layers) and constitutive
models (dynamic properties) can be highly uncertain. Field data
from downhole arrays have been used with system identification
methods to estimate soil parameters, such as shear wave velocities
and damping ratios. Glaser [9] summarized several efforts to char-
acterize soil properties using system identification methods
applied to data obtained from forced and ambient vibrations. Elga-
mal et al. [10], Zeghal et al. [11], and Glaser and Baise [12] used
seismic downhole array data at the Lotung site to identify the
dynamic properties of the soil profile and model the response dur-
ing several seismic events. Kokusho et al. [13] employed data
recorded at downhole seismic arrays during the 1995 Kobe Earth-
quake to estimate the shear wave velocities and damping ratios in
shallow soil layers. Tsai and Hashash [14] proposed a nonparamet-
ric approach to identify the soil behavior at different layers using
downhole array data, applying it to data from Lotung and La Cien-
aga sites [15]. Recently, Mercado et al. [16,17] proposed a system
identification method to obtain non-parametric estimates of the
shear stresses with downhole array data in the case of 1D and
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bi-directional (2D) soil response analyses, respectively. These
previous studies have proposed deterministic identification
approaches, providing point estimates of the quantities or param-
eters of interest. In this context, to overcome the limitations of
deterministic approaches, Bayesian inference methods allow
assessing the uncertainty in the system identification, in addition
to point estimates. In recent years, Bayesian methods (see [18]
for introductory concepts) are attracting the attention in the field
of geotechnical engineering for site characterization (e.g., [19,20]).

This paper proposes employing a Bayesian inference methodol-
ogy to estimate the model parameters involved in site response
analyses. The methodology uses the EQL method, implemented
in the computational program SHAKE91 [21], and downhole array
data. The proposed approach estimates the expected values and
covariance matrix of the model parameters using the measured
input (acceleration at the bedrock) and output (soil profile
responses) data. Although this model calibration approach applies
to any parametrized numerical model for site response analysis,
including NL models, the EQL model is used here as an illustrative
application due to its wide use in research and the engineering
practice.
2. Nonlinear 1D site response analysis

2.1. Soil response to cyclic loading

Local ground conditions influence the propagation of seismic
waves in the near surface, modifying the seismic site response
and the groundmotion. During seismic events, the behavior of soils
is hysteretic and nonlinear and the seismic-induced cyclic shear
strain decreases the secant shear modulus G and increases the
damping ratio D (Fig. 1a). This nonlinear soil behavior is described
as a function of the cyclic shear strain in the so-called degradation
curves (Fig. 1b) [22], which are influenced by factors such as the
cyclic shear strain amplitude [22], the soil plasticity [23], and the
effective confining stress [24]. Also, at very small cyclic shear
strain, of the order of 10�6–10�3%, the shear modulus can be
assumed constant and calculated as a function of the mass density
q and the shear wave velocity VS of the soil. In this context, various
studies consistently showed that the normalized degradation
curve of the shear modulus with respect to the small strain shear
modulus G=Gmax (Fig. 1b) fall within a narrow band, depending
on the soil type (i.e., sand, clay, or gravel).
Fig. 1. Equivalent-linear technique for 1D site response analysis (a) hysteresis loop and e
(c) sketch of 1D site response model.
2.2. Shear modulus degradation curve

The Hardin and Drnevich Hyperbolic Model (e.g., [22,25,26]) is
one of the most used models to characterize the nonlinear behavior
of soils. It considers the shear stress-shear strain curve of the soil as
an asymptotic hyperbola. The combination of this model with the
Masing Rule describes a hysteresis stress-strain loop, defined by
the secant shear modulus G and the damping ratio D. Fig. 1a shows
a hysteresis loop, the secant shear modulus, and the initial shear
modulus Gmax.

The Hyperbolic Model renders a degradation curve that cannot
be fitted to experimental data and thus is better expressed as [26]

G
Gmax

¼ 1
1þ ðc=crÞa

ð1Þ

In Eq. (1), a is a curvature parameter and cr is the reference
strain. The parameter cr is defined by the expression

cr ¼ cr1ðr0
m=PaÞk ð2Þ

In Eq. (2), r0
m ¼ r0

v ð1þ 2K0Þ=3 is the mean horizontal effective
stress, cr1 is the reference strain at atmospheric pressure, used as a
reference mean stress Pa, k is a sensitivity parameter, r 0

v is the ver-
tical effective stress, and K0 is the ratio of horizontal and vertical
effective stresses. Zhang et al. [27] suggested that the reference
strain cr is the shear strain at G=Gmax ¼ 0:5 in the degradation
curves. To numerically simulate the site response data, this study
calibrates the stiffness degradation curve for clays and sands with
data from [28,29], respectively.

2.3. Hysteretic damping

The damping ratio D represents the energy dissipated from var-
ious mechanisms simultaneously occurring at the particle level
within the soil, such as contact asperities, friction, strain rate
effects, and nonlinearity of the material. Fig. 1a shows a hysteresis
loop and the damping ratio D, which is calculated as

D ¼ WD

4pWS
ð3Þ

In Eq. (3),WD is the area of the complete hysteresis loop andWS

is the equivalent elastic stored energy. The calculation of D is
rather sensitive to experimental conditions and several efforts
have aimed at identifying indirect ways for its estimation. One of
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the most widely accepted indirect methods to estimate D is
through its relationship with the normalized shear modulus degra-
dation G=Gmax (e.g., [22]). In this context, D is related to G=Gmax as
suggested in [27] by

D ¼ f ðG=GmaxÞ þ Dmin ð4Þ
In Eq. (4), Dmin is the minimum damping ratio of the material

and f ðG=GmaxÞ is a function of the normalized shear modulus.
According to [27], this function can be expressed as

f ðG=GmaxÞ ¼ 10:6ðG=GmaxÞ2 � 31:6ðG=GmaxÞ þ 21 ð5Þ
The minimum damping ratio can be defined according to the

expression

Dmin ¼ Dmin1ðr0
m=PaÞ�k=2 ð6Þ

where Dmin1 is the damping ratio at the reference mean stress Pa.
Discussions regarding the existence of a minimum damping

ratio in the elastic regime of deformation are beyond the scope
of this study. In addition, the reference damping ratio Dmin1 is con-
sidered as a constant in this study, although it could be expressed
as a function of the plasticity index (PI). To numerically simulate
site response data, this study calibrates the damping ratio curves
for clays and sands with the data reported in [30].

2.4. Nonlinear 1D site response analysis

A methodology for addressing strong motion and site response
analysis during earthquakes is the 1D nonlinear wave propagation
model, which assumes that the subsoil is a horizontally layered
media, through which horizontally polarized shear waves (SH
waves) travel from-and-to the bedrock (Fig. 1c). In this study, each
layer is characterized by an elastic shear modulus and a viscous
damping ratio. The EQL method is an iterative procedure based
on vertically propagating SH waves in a layered media that
accounts for the degradation of the dynamic soil properties with
the cyclic shear strain. The method updates the shear modulus
and the damping ratio as a function of the induced shear strain,
using the normalized degradation curves, until compatible defor-
mations are achieved [21,31]. Based on Sections 2.1 to 2.3, the
response of the soil deposit can be written as a function of the
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Fig. 2. Iterative procedure of the EQL method
shear wave velocity VSi , the mass density qi, the thickness hi (with
i ¼ 1; . . . ;N þ 1 and hNþ1 ¼ 1), and the parameters defining the
shear modulus degradation and damping curves (i.e.,
G=Gmax vs: c and D vs: c) of each soil layer.

This study uses the EQL procedure implemented in SHAKE91
[21] to compute the soil deposit response, and it is summarized
as indicated in Fig. 2.
3. Bayesian filtering for parameter estimation in site response
problems

The soil deposit response predicted with the EQL model at time
step ðnþ 1Þ, ŷnþ1 2 Rm�1 (with m ¼ number or response measure-
ments), can be expressed mathematically as:

ŷnþ1 ¼ hnþ1ðDmin1j ; kj;aj;cr1j
;VSi ;hi;qi; €ub1:nþ1

Þ ¼ hnþ1ðh; €ub1:nþ1
Þ ð7Þ

In Eq. (7), hð�Þ is the nonlinear response function of the EQL
model, j is the soil type identifier (j ¼ 1; . . . ;M; M = number of
types of soils in the profile, e.g., clay, sand, and gravel), i is the soil
layer identifier (i ¼ 1; . . . ;N þ 1; N = number of soil layers),
€ub1:nþ1 2 Rðnþ1Þ�1 is the input acceleration time history at the bed-
rock from time step 1 to ðnþ 1Þ, h ¼ ½Dmin1j ; kj;aj;cr1j

;

VSi ;hi;qi�T 2 Rnh�1 is the vector of time-invariant parameters of
the EQL model (model parameter vector) with nh ¼ 3N þ 2þ 4M,
and the subscript n ¼ 0; . . . ;Ns � 1, being Ns the number of time
samples, represents the discrete-time step. Dmin1, k, a, and cr1 are
referred to as soil type parameters, while VSi , hi, and qi are referred
to as soil layer parameters. On the other hand, the field response of
the soil deposit can be recorded with an array of sensors, such as
accelerometers, seismometers, and transducers to measure strains
(e.g., [32]) and stresses (e.g., [33]). Assuming that €ub is known, the
measured response of the soil (ynþ1 2 Rm�1) can be related to the
EQL model predicted response at the time step ðnþ 1Þ as
ynþ1 ¼ ŷnþ1 þ vnþ1 ð8Þ

In Eq. (8), vnþ1 2 Rm�1 is the simulation error vector accounting
for the misfit between the measured and model predicted
responses and arises frommodeling errors (including uncertainties
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in the model parameters and in the model itself) and measurement
noise. The vector of time-invariant model parameters, h, is mod-
eled as a random walk process (i.e., the value of h at time step (n
+ 1) is equal to the value of h at time step n plus an error term
defined as a white noise) and assuming that model uncertainty is
neglected and that the measurement noise is a stationary, zero-
mean and independent white Gaussian noise (i.e., statistically
independent between measurement channels and across time),
the following parameter estimation problem can be formulated

hnþ1 ¼ hn þwn

ynþ1 ¼ hnþ1ðhnþ1; €ub1:nþ1
Þ þ vnþ1

ð9Þ

Using the notation Nðl;CÞ = normal probability density func-
tion with mean l and covariance matrix C, then wn � Nð0;Q nÞ
and vnþ1 � Nð0;Rnþ1Þ are the process and measurement noise vec-
tors, both with zero mean and covariance matrices Q n and Rnþ1,
respectively.

The nonlinear state-space model in Eq. (9) allows using Baye-
sian filtering techniques to estimate the model parameter vector
h by a prediction-correction scheme. In this work, for the initial

model parameter it is assumed that h0 � N ĥ0j0; P̂hh
0j0

� �
and the

Unscented Kalman filter (UKF) [34,35], a so-called Sigma-Point
(SP) Kalman Filter, is employed as estimation tool. The UKF is a
deterministic sampling approach that does not require analytical
linearization of the nonlinear state-space model in Eq. (9); there-
fore, model response sensitivities with respect to the parameters
to be estimated do not need to be computed. The scaled unscented
transformation [35] is used to generate the deterministic samples
(called sigma points or SPs) of the UKF. More details about the
UKF can be found in Appendix A and Fig. 3 shows the proposed
algorithm to calibrate the soil profile model using the measured
input at the bedrock and the soil response. Likewise, similar formu-
lations are employed in fields such as aerospace [36], structural
[37], and environmental [38] engineering. It is noted that other
estimation approaches (e.g., maximum likelihood estimation
method) could also be used to tackle this identification problem.
Fig. 3. Proposed method to calibrat
The proposed approach requires the process and measurement
noise covariance matrices (Q n and Rnþ1) and initial estimates of the
mean and covariance matrix of the model parameters to be identi-

fied (ĥ0j0 and P̂hh
0j0). The process and measurement noise covariance

matrices are taken as diagonal and time-invariant, i.e.,

Q n ¼ Q ¼ E½wwT � 2 Rnh�nh and Rnþ1 ¼ R ¼ E½vvT � 2 Rm�m. P̂hh
0j0 rep-

resents the uncertainty in the initial parameter estimate ĥ0j0. A

larger P̂hh
0j0 implies less confidence (more uncertainty) in ĥ0j0, then

the filter relies more on the measured responses (y) than on the
prior information of ĥ0j0. This is expected to speed up the conver-
gence rate of the estimation but may adversely influence its stabil-
ity (e.g., [39]). Larger diagonal entries of Q increase the estimation
uncertainty and larger relative importance is given to the response
measurement ynþ1 than to the latest prior estimate of the model
parameters. If the model uncertainty is neglected, diagonal entries
of the matrix R are estimates of the actual variances of the noise in

the different measurements. ĥ0j0, P̂hh
0j0, Q , and R are chosen based on

experience and engineering judgment.

4. Validation examples

Two numerical examples are presented to validate the proposed
approach. In each of them, the response of a soil profile is first
simulated using the EQL method with a set of realistic model
parameter values, referred to as true model parameter values
htrue. Then, different response time histories, referred to as true
response ytrue, are polluted with additive white Gaussian noise
and used as measured site responses y in the parameter estimation
stage. The estimation phase assumed unknown model parameters
that are estimated with the proposed method.

4.1. Soil profile and earthquake input motions

The analysis considered a 46 m depth soil profile that consists of
six sandy and clayey layers (the same profile is examined in the
e one-dimensional EQL models.



Fig. 5. Acceleration time history recorded at the Diamond Heights station (90�
component) during the 1989 Loma Prieta Earthquake (MW 6.9).

R. Astroza et al. / Computers and Geotechnics 89 (2017) 43–54 47
Shake91 user’s manual [21]). The details of the soil profile and the
shear wave velocities VS of each layer are shown in Fig. 4a. Despite
a slight VS inversion near the surface, the profile gradually
increases the stiffness with depth. In Fig. 4b, the G=Gmax and D ver-
sus c curves for sand with r0

m ¼ 300 kPa are plotted. Here, the

‘‘true” soil parameters for sand Dsand
min1 ¼ 0:82, ksand ¼ 0:316,

asand ¼ 0:88, and csand
r1 ¼ 0:0004 were calibrated using experimental

data reported in [29,30] and the ‘‘true” soil type parameters for

clay Dclay
min1 ¼ 1:06, kclay ¼ 0:207, aclay ¼ 0:9, and cclay

r1 ¼ 0:00108 were
calibrated with data reported in [28,30]. To analyze the sensitivity
of the shear modulus degradation and damping curves with
respect to the soil type parameters (i.e., Dmin1, k, a, and cr1), Fig. 4b
shows the curves for sand when each of these parameters takes
values of 0.5, 1.0, and 2.0 times its true value with all other param-
eters kept equal to their true values (i.e., each parameter is varied
individually). The continuous lines correspond to the curves with
the true parameter value, while dotted and dashed ones are the
curves with 0.5 and 2.0 times the true parameter value, respec-
tively. G=Gmax and D versus c curves are very sensitive to a and
cr1, but considerably less sensitive to Dmin1 and k. Similar results
are obtained for shear modulus degradation and damping curves
of clays. The input acceleration record corresponds to the 90� com-
ponent acceleration measured at the Diamond Heights station dur-
ing the 1989 Loma Prieta Earthquake (Fig. 5). The original 40 s
duration record has a peak acceleration of 0.11 g.

4.2. Case study 1: Estimation of shear modulus and damping curves
and shear wave velocities using limited acceleration response

4.2.1. Acceleration-only and heterogeneous response measurements
The first case study (CS) analyzes the estimation of the model

parameters associated with the modulus reduction and damping
curves (i.e., soil type parameters) as well as the layers’ initial shear
wave velocities. The model parameter vector is defined by

h ¼ Dclay
min1;k

clay
;aclay;cclay

r1 ;Dsand
min1;k

sand
;asand;csand

r1 ;VS1 ;VS2 ;VS3 ;VS4 ;VS5 ;
h

VS6 ;VS7 �T 2 R15�1. To simulate the response of the soil deposit, the
true model parameters are taken as htrue ¼ ½1:06;0:207;0:9;
0:00108; 0:82; 0:316; 0:88; 0:0004; 305; 275; 335; 365; 455; 520;
1220�T 2 R15�1, where shear wave velocities are in units of m/s. The
EQL method is used to simulate the response of the soil deposit of
Fig. 4. (a) Soil profile and recorded responses used in the example, (b) Sensitivity of G=Gm

0.5 � true value, dashed: 2.0 � true value).
Fig. 4a when the 90� component acceleration time history recorded
at the Diamond Heights during the 1989 Loma Prieta Earthquake
(Fig. 5) amplitude-scaled to a peak acceleration (PA) of 0.5 g is used
as input at the bedrock. Different response quantities of this true
response ytrue are then polluted with artificial measurement noise
and used to define the response measurement y. Various cases of
response measurements are analyzed, when the acceleration
response at the surface (CS1_01 and CS1_02 in Table 1), accelera-
tion responses at different depths (CS1_03 in Table 1), and hetero-
geneous responses (CS1_04 in Table 1) of the soil deposit are
measured. The first scenario is the typical situation when only a
single seismic station is available at the surface of a soil deposit
(acc1 in Fig. 4a). The second one corresponds to when a seismic
array is deployed in a borehole (acc1 to acc6 in Fig. 4a). Additional
scenarios were investigated considering that stresses and strains
are measured in addition to acceleration time histories. Each sce-
nario is summarized in Table 1 and the measured responses are
depicted in Fig. 4a. Uncorrelated white Gaussian measurement
noises with zero-mean and standard deviations (root-mean-
square or RMS) of 0.5% g (0.005 g), 1 mm/m, and 50 Pa are used
to pollute the acceleration, strain, and stress response time histo-
ries, respectively. Note that the amplitude of these measurement
ax and D versus c curves for sand withr0
m ¼ 300 kPa (continuous: true value, dotted:



Table 1
Final posterior estimates and CVs (in parenthesis) of the model parameters for CS1.

Case Output ĥ0j0 Final estimates of model parameters ĥ�i =h
true
i and coefficient of variations (in parenthesis)

Dclay
min1 kclay aclay cclay

r1 Dsand
min1 ksand asand csand

r1
VS1 VS2 VS3 VS4 VS5 VS6 VS7

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10 i = 11 i = 12 i = 13 i = 14 i = 15

CS1_01 acc1 ĥ0j01 1.18
(16.8)

1.40
(11.9)

1.45
(10.6)

1.53
(13.3)

1.29
(17.3)

1.23
(16.8)

0.80
(12.3)

1.46
(8.3)

1.18
(16.6)

1.55
(8.3)

0.81
(3.2)

0.94
(5.1)

0.82
(3.7)

0.90
(3.2)

0.99
(8.3)

CS1_02 acc1 ĥ0j02 1.18
(18.4)

1.02
(16.0)

1.05
(14.1)

0.99
(13.6)

1.41
(18.3)

1.18
(18.7)

0.71
(10.1)

0.62
(11.9)

1.28
(18.5)

1.02
(5.1)

0.87
(4.8)

1.22
(16.7)

0.93
(4.6)

1.08
(7.7)

1.04
(7.9)

CS1_03 acc1
acc3
acc5

ĥ0j02 1.75
(5.3)

0.31
(3.9)

1.06
(1.0)

0.78
(1.2)

1.68
(2.0)

0.84
(5.8)

1.47
(0.27)

1.60
(0.7)

2.14
(8.4)

0.91
(0.1)

0.94
(0.1)

1.11
(0.2)

0.92
(0.1)

0.95
(0.1)

0.91
(0.2)

CS1_04 acc1
acc3
acc5
str
sts

ĥ0j02 1.77
(2.7)

0.98
(1.7)

0.84
(0.9)

1.32
(0.7)

1.48
(1.4)

0.33
(3.6)

0.68
(0.18)

0.63
(0.3)

1.05
(1.0)

0.98
(0.1)

0.97
(0.1)

0.91
(0.1)

0.96
(0.1)

0.99
(0.1)

1.00
(0.2)

Estimates with an error less than or equal to 10% are shown in bold.
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noises are larger than those expected when using current sensing
technologies in real-world applications. They are assumed high
in order to analyze the robustness of the proposed approach to
the output measurement noise.

In the estimation phase, CS1_01 and CS1_02 consider initial
estimates of the model parameters ĥ0j01 ¼ 1:3htrue and ĥ0j02 ¼
½1:1;0:8;1:2;0:9;1:3;1:2;0:8;0:8;1:3;1:4;0:8;1:2;0:7;1:3;1:2�T � htrue

(with a� b denoting element-wise multiplication of vectors a and
b), respectively. In both cases, the initial covariance matrix is

assumed diagonal with entries computed as p� ĥi0j0
� �2

with

i ¼ 1;2; . . . ;15 and p ¼ 0:20. The diagonal entries of the process

noise covariance matrix are taken equal q� ĥi0j0
� �2

with

i ¼ 1;2; . . . ;15 and q ¼ 1� 10�5. The diagonal entries of the mea-
surement noise covariance matrix R are selected as (0.3% g)2,
(0.5 mm/m)2, and (25 Pa)2. The elements of matrix R are purposely
selected different from the variances of the measurement noises
used to contaminate the true responses, because only an estimate
of the amplitude of measurement noise is possible in real-life
applications.

Table 1 summarizes final posterior model parameter estimates

ĥ� ¼ ĥNjN
� �

normalized with respect to the true parameter values

and the final posterior coefficient of variation (CV) estimates for
the four case studies. If only the acceleration at the surface is
recorded (CS1_01 and CS1_02), the shear wave velocities of the
deeper layers (VS4 to VS7 ) are reasonably well estimated, while soil
type parameters for clay and sand, as well as shear wave velocities
of shallow layers are not well estimated and their CVs remain high.
From cases CS1_01 and CS1_02 is observed that estimation results
are consistent when different initial model parameter estimates
ĥ0j0 are considered. If acceleration response at layers 3 and 5
(acc3 and acc5 in Fig. 4a) are considered in addition to the surface
acceleration response (CS1_03), estimation of shear wave veloci-
ties improves, approaching their true values and reducing the esti-
mation uncertainty (CV), except for VS1 . When strain and stress in
layer 2 (r2 and e2 in Fig. 4a) are considered as measured response
in addition to acceleration responses at layers 1, 3 and 5 (CS1_04),
shear wave velocities of all layers approach their true values with
relative errors less than or equal to 5%. However, estimation of soil
type parameters is still not accurate in case CS1_04. Parameters
with good final estimate but with a high CV mean that the estima-
tion is not reliable because a high estimation uncertainty is associ-
ated with the model parameter estimates.
To analyze the sensitivity of the different output response mea-
surements considered (accelerations, strain, and stress) with
respect to the fifteen model parameters to be estimated, tornado
diagrams are employed [40]. In the tornado diagram analysis, each
model parameter is perturbed from its true value to lower and
upper bounds – selected here as 0.9 and 1.1 times the true model
parameter value, respectively – keeping the other parameter val-
ues fixed (equal to the true values), i.e., each model parameter is
varied individually. Then, the response for each perturbed model
parameter is computed by subjecting the soil deposit model to
the Diamond Heights record (Fig. 5) amplitude-scaled to a PA of
0.5 g. The range of response obtained for different perturbations,
called swing, is considered as a measure of sensitivity of the
response with respect to the perturbed model parameter. Here,
the swing in the response is evaluated using the relative root-
mean-square error (RRMSE) between the response with the per-
turbed parameter and the response with the true parameter. The
RRMSE between vectors a 2 RL�1 and b 2 RL�1 is defined by

RRMSEða;bÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=L

PL
k¼1ðak � bkÞ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=L

PL
k¼1ðakÞ2

q � 100 ½%� ð10Þ

Fig. 6a shows the tornado diagram for the surface acceleration
and stress in layer 2 responses. The surface acceleration response
is mostly sensitive to model parameters VS6 , VS5 , and VS2 , while it

is practically insensitive to parameters kclay, ksand, aclay, VS1 , D
clay
min1,

and Dsand
min1. The stress in layer 2 is more sensitive (Fig. 6b) to all

parameters compared to surface acceleration, but a similar order
of sensitivities for both responses is observed. Those parameters
with higher sensitives are expected to be better estimated because
more information about them is contained in the measured
responses. On the other hand, model parameters with low sensitiv-
ities are non-identifiable because the measured responses contain
very little information about them. This is confirmed by the esti-
mation results presented in Table 1, e.g., for CS1_04, all the shear
wave velocities, except VS1 , are well estimated with low CVs, while
clay parameters are not well identified and/or have high CV
estimates.

To check the proper calibration of the soil profile model, Table 2
reports the RRMSEs between the true responses and the estimated
responses based on the initial estimate of the model parameters
(ĥ0j0) and based on the final posterior estimate of the model param-

eters (ĥ�). The large misfit between the true and estimated



(a) (b)

Fig. 6. Tornado diagram of RRMSE of response measurements with 0:90htrue and 1:10htrue with respect to htrue (a) surface acceleration (acc1 in Fig. 4a) and (b) stress in layer 2
(r2 in Fig. 4a).

Table 2
RRMSE (in %) between the true responses and the corresponding model predictions based on the final estimates of the model parameters for case study 1.

Case ĥ Output response measurement (yi)

acc1 acc3 acc5 e2 r2

CS1_01 ĥ0j01 145.7 – – – –

ĥ� 15.3 – – – –

CS1_02 ĥ0j02 62.1 – – – –

ĥ� 6.2 – – – –

CS1_03 ĥ0j02 62.1 68.7 64.7 – –

ĥ� 6.9 5.9 7.3 – –

CS1_04 ĥ0j02 62.1 68.7 64.7 86.1 57.8

ĥ� 2.0 2.0 2.7 2.3 2.2
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response with ĥ0j0 (57.8% � RRMSE � 145.7%), is significantly
reduced after the model is updated. The RRMSEs between the true
and the estimated response with ĥ� are less than or equal to 15.3%
and the effect of adding additional response measurements in
Fig. 7. Comparison of true and estimated responses with ĥ0j0 and ĥ� for CS1_02.
improving the calibration of the model is clearly observed, e.g., in
CS1_04 the RRMSEs are less than or equal to 2.7%, which implies
an almost exact match between the true response and the esti-
mated response with ĥ�. Fig. 7 compares the surface acceleration
response based on the true, initial, and final estimated model
parameters for CS1_02. The excellent agreement between the
response computed from the final estimated parameters and the
corresponding true response proves the successful updating of
the model.

4.2.2. Verification analysis
In this section, the prediction capabilities of the models cali-

brated in previous section are investigated by considering a differ-
ent input motion at the bedrock. Component 180� recorded at
252 m depth at La Cienaga station during the 2001 Hollywood
Earthquake (Fig. 8a) amplitude-scaled to PA = 0.4 g is used as exci-
tation at the bedrock. The intensity of this excitation is similar to
that used for model calibration in Section 4.2.1 (90� component
at Diamond Heights station during the 1989 Loma Prieta Earth-
quake with PA = 0.5 g). The true response of the soil deposit (i.e.,
using htrue) and the predicted response using the final estimates
of the model parameters (i.e., ĥ�) obtained in CS1_01 are simulated
using La Cienaga record amplitude-scaled to a PA of 0.4 g as input



Fig. 8. (a) Acceleration time history recorded at La Cienaga Geotechnical Array (180� component at 252 m depth) during the 2001 Hollywood Earthquake and (b) Comparison
of the true and estimated (with ĥ� obtained in CS1_01) surface acceleration response for La Cienaga input with PA = 0.4 g (time window 1.0–4.0 s).

Table 3
Final estimate and CV (in parenthesis) of the model parameters for case study 2.

Case Output Final estimates of model parameters ĥ�i =h
true
i and coefficient of variations (in parenthesis)

Dclay
min1 kclay aclay cclay

r1 Dsand
min1 ksand asand csand

r1
VS1 VS2 VS3 VS4 VS5 VS6 VS7 h1 h2 h3 h4 h5 h6

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10 i = 11 i = 12 i = 13 i = 14 i = 15 i = 16 i = 17 i = 18 i = 19 i = 20 i = 21

CS2_01 acc1 1.36
(17.2)

0.66
(16.3)

1.21
(16.7)

0.80
(13.6)

1.22
(17.4)

1.26
(18.5)

0.60
(14.4)

0.69
(14.1)

1.36
(17.7)

1.13
(6.4)

1.03
(5.9)

1.09
(8.8)

1.01
(6.9)

1.24
(7.5)

1.11
(6.0)

0.75
(16.8)

1.26
(15.3)

1.33
(16.4)

1.10
(18.2)

0.79
(14.6)

1.31
(13.7)

CS2_02 acc1
acc4
acc6

1.51
(1.4)

1.25
(1.9)

1.11
(1.5)

1.14
(1.1)

1.42
(2.3)

0.84
(2.6)

0.46
(0.8)

0.92
(1.1)

1.30
(1.7)

1.00
(0.1)

0.95
(0.1)

1.09
(0.2)

1.03
(0.1)

1.04
(0.1)

1.07
(0.3)

1.04
(2.6)

0.74
(1.0)

1.30
(1.1)

1.06
(6.4)

1.15
(3.4)

1.03
(0.4)

Estimates with an error less than or equal to 10% are shown in bold.

50 R. Astroza et al. / Computers and Geotechnics 89 (2017) 43–54
excitation. Fig. 8b depicts the comparison between the true and
estimated (with ĥ� obtained in CS1_01) surface acceleration
responses. A good agreement between both responses is observed
with a RRMSE½yðhtrueÞ; yðĥ�CS1 01Þ� ¼ 29:0%, proving that the model
updated for a given earthquake excitation can be successfully used
to predict the response of the deposit for a different earthquake. It
is noted that the error between the true response and the response
obtained with the initial model parameters in CS1_01 is much lar-

ger, with a RRMSE yðhtrueÞ; yðĥ0j01 Þ
h i

¼ 172:7%.
4.3. Case study 2: Estimation of shear modulus reduction and damping
curves, shear wave velocities, and layers thicknesses using limited
acceleration response

4.3.1. Acceleration-only response measurements
This case study analyzes the identification of the modulus

reduction and damping curves, the layers’ initial shear wave veloc-
ities, and the layers’ thickness when the acceleration time history
is known at the surface of the soil deposit (CS2_01 in Table 3)
and at different depths (CS2_02 in Table 3). The model parameter

vector h ¼ ½Dclay
min1; k

clay
;aclay;cclay

r1 ;Dsand
min1; k

sand
;asand;csand

r1 ; VS1 ;VS2 ;VS3 ;

VS4 ;VS5 ;VS6 ;VS7 ;h1;h2;h3;h4;h5;h6�T 2 R21�1 is then identified
using y and the input excitation. The true model parameters used
to simulate the true response of the soil deposit are
htrue ¼ 1:06;0:207;0:9;0:00108;0:82;0:316;0:88;0:0004;305;275;½
335;365;455;520;1220;10;20;20;20;40;40�T 2 R21�1 where
shear wave velocities (entries 9 to 15) are in m/s and layers’ thick-
ness (entries 16 to 21) in m. The 90� component at the Diamond
Heights station recorded in the 1989 Loma Prieta Earthquake
(Fig. 5) amplitude-scaled to a peak acceleration (PA) of 0.3 g is used
as excitation at the bedrock. Uncorrelated white Gaussian mea-
surement noises with zero-mean and 0.5% g RMS are used to con-
taminate the true acceleration responses and define the
measured response y.

CS2_01 considers only the acceleration response at the surface
of the soil profile, while CS2_02 assumes that acceleration
responses are recorded at the surface, layer 4, and layer 6 (see
Table 3). The estimation of the thickness of the layers implies that
the total depth of the soil deposit is unknown, which can be the
case in some real-world applications. If the total depth of the
deposit is known, a constraint on the total height of the deposit
(sum of the heights of the soil layers) can be added by using a con-
strained nonlinear filter (e.g., [41,42]).

In the estimation, ĥ0j0 ¼ 1:1;0:8;1:2; 0:9;1:3;1:2; 0:8;0:8;1:3;½
1:4;0:8;1:2;0:7;1:3;1:2;0:8;1:2;1:3;1:1;0:8;1:3�T � htrue is assumed
as the initial estimate of the model parameters and the diagonal

entries of P̂hh
0j0 are taken as ðp� ĥi0j0Þ

2
with i ¼ 1;2; . . . ;21 and

p ¼ 0:20. The diagonal entries of Q are taken equal ðq� ĥi0j0Þ
2
with

i ¼ 1;2; . . . ;21 and q ¼ 1� 10�5 and the diagonal entries of R are
selected as (0.3% g)2. Table 3 presents the normalized final poste-
rior model parameter estimates and the final posterior CV esti-
mates for CS2_01 and CS2_02. Estimation results are consistent
with those presented in Section 4.2.1. Shear wave velocities are
properly estimated and soil-type parameters are not accurately
estimated because the measured responses are not very sensitive
to these parameters. Estimation of layers’ thickness improves in
CS2_02 compared to CS2_01 but their final CV estimates are still
large in some cases.

Figs. 9 and 10 show the time history of the posterior estimate
and CV of the model parameters for CS2_01 and CS2_02. It can be
observed for any given model parameter that the estimation



Fig. 9. Time history of the posterior estimates of the model parameters for CS2_01 and CS2_02.
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uncertainty is always lower in CS2_02 than in CS2_01 because
more information is contained in the response measurements con-
sidered in CS2_02. Although all parameters start updating from the
beginning of the time history, most of them are not sensitive
enough to the measured response and therefore their final esti-
mates do not converge to the true values and the final CVs esti-
mates are large. This observation does not necessarily imply poor
model predictability.

Table 4 summarizes the RRMSEs between the true responses
and those estimated based on ĥ�. An excellent agreement between
these responses is observed and the significant improvement
compared to the estimated response based on ĥ0j0 is evident,
confirming the proper calibration of the soil profile model.
Fig. 11 depicts the comparison between the true and estimated
surface acceleration responses with ĥ0j0 and ĥ� for CS2_01, where
a reduction in the RRMSE from 85.8 to 4.8% confirms the accurate
updating of the model.
4.3.2. Verification analysis
As in Section 4.2.2, a verification analysis is conducted for CS2.

Here, the acceleration time history recorded at La Cienaga (Fig. 8a)
with a PA = 0.8 g is used as excitation at the bedrock. This excita-
tion is considerably larger than that used for model calibration in
Section 4.3.1 and therefore allows investigating the prediction
capabilities when the model is calibrated with an earthquake exci-
tation of smaller amplitude and different characteristics, which is
usually the case in engineering practice. Fig. 12 compares the true
surface acceleration response of the soil deposit with the estimated
response based on ĥ� obtained in CS2_01. An excellent agreement

is observed, with RRMSE yðhtrueÞ; yðĥ�CS2 01Þ
h i

¼ 17:9%.

5. Conclusions

This paper presented a novel approach that uses the Bayesian
inference methodology to calibrate numerical models to perform
site response analysis, fundamental in assessing seismic hazard
and earthquake damage. The approach estimates the expected val-
ues and covariance matrix of model parameters, such as shear
wave velocity, damping ratio, and thickness of the constituent lay-
ers, that define the numerical model. The equivalent-linear (EQL)
method is used as the numerical model because of its popularity
and wide usage. Synthetic data recorded on downhole arrays



Fig. 10. Time history of the posterior coefficient of variation of the model parameters for CS2_01 and CS2_02.

Table 4
RRMSE (in %) between the true responses and the corresponding model predictions
based on the final estimates of the model parameters for case study 2.

Case ĥ Output response measurement (yi)

a1 a2 a3 a4 a5

CS2_01 ĥ0j0 85.8 – – – –

ĥ� 4.8 – – – –

CS2_02 ĥ0j0 85.8 89.5 69.9 – –

ĥ� 1.2 1.1 2.2 – –

Fig. 11. Comparison of true and estimated responses with ĥ0 and ĥ� for CS2_01.
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during an earthquake are employed to estimate the parameters
and calibrate the numerical model of the soil deposit. The
unscented Kalman filter is employed as estimation tool, facilitating
the identification of any model parameter, because the response
sensitivities with respect to the parameters to be estimated are
not required. Two numerical applications show the performance
and prediction capabilities of the proposed approach. It is con-
cluded that the numerical model is accurately updated, even if a
very large number of model parameters need to be estimated using
a very low number of response measurements. In addition, the
effects of heterogeneous response measurement on the estimation
results are presented. Although the proposed framework is used
with the EQL method, it has the capability to be employed with



Fig. 12. Comparison of true and estimated (with ĥ� obtained in CS2_01) surface
acceleration response for La Cienaga input with PA = 0.8 g (time window 1.0–4.0 s).
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other site response analysis techniques, such as fully nonlinear
models. In future work, the presented approach will be used with
experimental data recorded from downhole arrays.
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Appendix A

Consider a nonlinear discrete-time state-space model:

xnþ1 ¼ fnðxn;unÞ þwn ðA1Þ
ynþ1 ¼ hnþ1ðxnþ1;unþ1Þ þ vnþ1 ðA2Þ
where xn 2 Rnx , un 2 Rnu , and yn 2 Rny are the unknown system
state, input, and measurement vectors at time tn, respectively, wn

and vn are mutually independent, zero-mean white Gaussian ran-
dom vectors with covariance matrices Q n and Rn, respectively,
and fn and hn are deterministic and known nonlinear vector-
valued functions. It is assumed that the probability density func-

tions (PDFs) pðxnþ1jy1:nÞ ¼ N xnþ1; x̂nþ1jn; P̂xx
nþ1jn

� �
and pðynþ1jy1:nÞ

are Gaussian (with y1:n ¼ yT
1; y

T
2; . . . ; y

T
n

� �T ), where N z; ẑ; P̂zz
� �

denotes a multivariate Gaussian distribution for the random vector

z and ẑ and P̂zz denote the mean and covariance matrix of z. The

mean x̂nþ1jn and covariance matrix P̂xx
nþ1jn can be derived as

x̂nþ1jn ¼
Z

fnðxn;unÞN xn; x̂njn; P̂xx
njn

� �
dxn ðA3Þ

P̂xx
nþ1jn ¼

Z
fnðxn;unÞfTnðxn;unÞN xn; x̂njn; P̂xx

njn
� �

dxn� x̂nþ1jnx̂T
nþ1jnþQ n

ðA4Þ
The predicted mean and covariance matrix of ynþ1 given y1:n can

be expressed as

ŷnþ1jn ¼
Z

hnþ1ðxnþ1;unþ1ÞN xnþ1; x̂nþ1jn; P̂xx
nþ1jn

� �
dxnþ1 ðA5Þ
P̂yy
nþ1jn ¼

Z
hnþ1ðxnþ1;unþ1ÞhT

nþ1ðxnþ1;unþ1ÞN xnþ1; x̂nþ1jn; P̂xx
nþ1jn

� �
dxnþ1

� ŷnþ1jnŷT
nþ1jnþRnþ1

ðA6Þ
Similarly, the cross-covariance matrix P̂xy

nþ1jn can be obtained as

P̂xy
nþ1jn ¼

Z
xnþ1h

T
nþ1ðxnþ1;unþ1ÞN xnþ1; x̂nþ1jn; P̂xx

nþ1jn
� �

dxnþ1

� x̂nþ1jnŷT
nþ1jn ðA7Þ

Based on the previous assumptions, it follows that pðxnþ1jy1:nþ1Þ
is also Gaussian. Then, it follows that

pðxnþ1jy1:nþ1Þ ¼ N xnþ1; x̂nþ1jnþ1; P̂xx
nþ1jnþ1

� �
ðA8Þ

with

x̂nþ1jnþ1 ¼ x̂nþ1jn þ P̂xy
nþ1jnðP̂yy

nþ1jnÞ
1ðynþ1 � ŷnþ1jnÞ ðA9Þ

P̂xx
nþ1jnþ1 ¼ P̂xx

nþ1jn � P̂xy
nþ1jn P̂yy

nþ1jn

� �1
P̂xy
nþ1jn

� �T
ðA10Þ

To evaluate the integrals in (A3)–(A7), the Unscented Kalman
Filter (UKF) employs the unscented transformation (UT), which
expresses a random vector s by a set of deterministically chosen
sample points (referred to as sigma points or SPs) such that the
weighted sample mean and weighted sample covariance matrix
of the SPs match exactly the true mean and covariance matrix of
the random vector s. If the SPs are propagated through a nonlinear
function, they capture the true mean and covariance matrix up to
the second order of the Taylor series expansion of the nonlinear
function [35]. The UKF evaluates (A3)–(A7) as follows:

x̂nþ1jn ¼
X2nx
i¼1

W ðiÞ
m vðiÞ

nþ1jn ðA11Þ

P̂xx
nþ1jn ¼

X2nx
i¼1

W ðiÞ
c vðiÞ

nþ1jn � x̂nþ1jn
h i

vðiÞ
nþ1jn � x̂nþ1jn

h iT
þ Q n ðA12Þ

ŷnþ1jn ¼
X2nx
i¼1

W ðiÞ
mhnþ1 vðiÞ

nþ1jn

� �
ðA13Þ

P̂yy
nþ1jn ¼

X2nx
i¼1

W ðiÞ
c hnþ1ðvðiÞ

nþ1jnÞ � ŷnþ1jn
h i

hnþ1ðvðiÞ
nþ1jnÞ � ŷnþ1jn

h iT
þ Rnþ1

ðA14Þ

P̂xy
nþ1jn ¼

X2nx
i¼1

W ðiÞ
c vðiÞ

nþ1jn � x̂nþ1jn
h i

hnþ1ðvðiÞ
nþ1jnÞ � ŷnþ1jn

h iT
ðA15Þ

where the weighting coefficients of the SPs to estimate the means

and covariance matrices, WðiÞ
m and WðiÞ

c respectively, are

W ð0Þ
m ¼ k

nx þ k
; W ð0Þ

c ¼ k
nx þ k

þ ð1� ~a2 þ ~bÞ;

W ðiÞ
m ¼ W ðiÞ

c ¼ 1
2ðnx þ kÞ ; i ¼ 1; . . . ;2nx ðA16Þ

and the SPs are calculated as

vðiÞ
nþ1jn ¼

x̂njn if i ¼ 0

x̂njn þ ðc
ffiffiffiffiffiffiffiffiffi
P̂nxx
nj

q
Þ
i

h iT
if i ¼ 1; . . . ;nx

x̂njn � ðc
ffiffiffiffiffiffiffiffiffi
P̂nxx
nj

q
Þ
i

h iT
if i ¼ nx þ 1; . . . ;2nx

8>>>><
>>>>:

ðA17Þ
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with
ffiffiffi
P

p
= square-root of the covariance matrix P, ð� � �Þi represents

the ith row of the matrix inside the parentheses, c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
nx þ k

p
,

k ¼ ~a2ðnx þ jÞ � nx, ~a 2 10�4;1
h i

is a constant related to the spread

of the SPs around the mean, and j is a secondary scaling parameter.
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