Geophysical Characterization of the Chilean Seismological Stations: First Results

Article in Seismological Research Letters · March 2018

DOI: 10.1785/0220170156

7 authors, including:

Felipe Leyton
University of Chile
50 PUBLICATIONS 369 CITATIONS

Cesar Pasten
University of Chile
38 PUBLICATIONS 195 CITATIONS

Sergio Ruiz
University of Chile
71 PUBLICATIONS 394 CITATIONS

Gonzalo Andrés Montalva
University of Concepción
48 PUBLICATIONS 185 CITATIONS

Some of the authors of this publication are also working on these related projects:

Seismic site characterization of the Santiago Basin View project

Site Effects Observatory on an Alluvial Basin View project

All content following this page was uploaded by Sergio Ruiz on 09 February 2018.

The user has requested enhancement of the downloaded file.
Geophysical Characterization of the Chilean Seismological Stations: First Results

by F. Leyton, A. Leopold, G. Hurtado, C. Pastén, S. Ruiz, G. Montalva, and E. Saéz

ABSTRACT

The Chilean Seismological Network has been rapidly growing in recent years, going from a few dozens stations working before 2010 to nearly 100 installed all over the territory. Even more, nearly 300 strong-motion stations from the Accelerographic National Network have recently complemented this network, mainly deployed in large cities, at a variety of site conditions. All of these stations are currently providing useful information of Chilean earthquakes and are expected to record moderate-to-large events. However, the lack of appropriate site characterization sets an important limit to its usefulness. In this work, we present the geophysical characterization of 163 stations, the first results of larger effort to complete the characterization at all sites, based on array measurements of microtremors and horizontal-to-vertical spectral ratios. This information will help improve our understanding of the dynamic behavior of soils during earthquakes, providing relevant information for seismic design and seismic codes.

Electronic Supplement: Figures showing distribution of the geophones, and table with nearly 400 seismic stations managed by the Centro Sismológico Nacional de Universidad de Chile (CSN), along with their location and, the average S-wave velocity in the upper 30 m and the horizontal-to-vertical spectral ratio.

INTRODUCTION

The Chilean Seismological Network has been growing not only in number of stations but also in the type of instruments that they have. Since 2012, the National Seismological Center of the University of Chile (Centro Sismológico Nacional [CSN]) is operating more than 100 stations, composed of broadband seismometers, accelerometers, and Global Navigation Satellite Systems instruments, with their data being transmitted in real time to the analysis center (Barrientos, 2018; CSN, 2017; see Data and Resources). More recently, the National Office of Emergency and Mitigations has transferred nearly 300 strong-motion stations (Red Nacional de Acelerómetros [RNA]) to the CSN, to be operated along with the rest of the network. These instruments from the RNA network are located throughout the whole country, concentrated in cities and other populated areas (see Fig. 1); this distribution gives a unique opportunity to improve our knowledge of the behavior of soil deposits during earthquakes, especially in urbanized areas. All the data collected by these networks are freely available and can be downloaded at any time (Chilean Strong-Motion Database, 2017; see Data and Resources). Moreover, the CSN is currently beginning a large effort to systematically characterize the local site conditions where all these stations are located.

It has clearly been established that local site conditions strongly modify the shaking produced by large earthquakes; moreover, it has been observed that damage produced by large earthquakes is strongly controlled by these conditions (Seed et al., 1976). Currently, several seismic codes adopted a number of geophysical measurements for classification related to seismic site amplifications, being the harmonic or time-weighted average of the upper 30 m of the S-wave profile (V_{S30}) the most popular (Dobry et al., 2000). Furthermore, recent studies suggest that V_{S30}, being useful in most cases, fails to capture the effect of thick sediments (Steidl, 2000; Régnier et al., 2014) and might even overestimate the ground-motion amplitudes for a given frequency range (Park and Hashash, 2004), having the need to complement it with other sources of information such as the predominant site frequency (Cadet et al., 2010).

Several methods have been used to determine the properties of the upper layers at a site, including invasive and non-invasive methods. These last ones are particularly preferred due to their lower costs and interesting capabilities of describing the subsurface structure (Aki, 1957; Asten and Henstridge, 1984; Horike, 1985). In the present study, we focus on array-based, surface-wave methods, shown to be able to perform correctly in Chile (Humire et al., 2014; Kayen et al., 2014; Molnar et al., 2015). We complement these procedures with the well-known horizontal-to-vertical spectral ratio (HVSR), which has become increasingly popular (Pilz et al., 2010; Molnar et al., 2015).
and has been successfully used to estimate the fundamental frequency of the site in Chile (Leyton et al., 2013; Becerra et al., 2015). In the present study, we use microtremor measurements to estimate the geophysical properties of the upper layers of 163 sites with strong-motion stations. We focus on the methodologies that enable us to investigate up to a significant depth and can be used in urban areas, with strong influence of anthropogenic seismic noise.

METHODOLOGY

In this study, we used mostly passive surface-wave methods to extract dispersion curves via spatial autocorrelation (Aki, 1957; Asten and Henstridge, 1984) or frequency–wavenumber (Horike, 1985); complemented with the single-station measurements of the HVSR. For all the measurements, we used three-component seismographs, with reliable frequency range.
from 0.1 to 1024 Hz (Tromino, 2017; see Data and Resources); these instruments have previously shown their suitability for these kinds of studies (Humire et al., 2014; Becerra et al., 2015; Molnar et al., 2015). In the present work, we only used the vertical components for the array processing, whereas the horizontal ones were considered to compute the HVSR.

The field procedure was explained in detail in a previous work (Leyton et al., 2017); nevertheless, in a few words, we deploy instruments in the area around the station in two arrays: a large irregular quadrilateral, covering the largest possible distances, and an equilateral triangle with a central station, covering distances ranging from 10 to 30 m (an example can be seen in Fig. S1, available in the electronic supplement to this article). We recorded microtremors from 20 up to 40 min, depending on the noise level at the time of the measurements. For sites where rock was suspected to be near the surface, given the location and previous knowledge of the area, we complemented the passive measurements using active source methods, methodology that has proven to give enough information to estimate the upper tens of meters (Humire et al., 2014). We used 4–8 geophones, with linear arrays configurations (4–7 m spacing), and a sledgehammer as active source.

The HVSRs were computed following a previously defined procedure (Leyton et al., 2012), based on the Stockwell Transform (ST; Stockwell et al., 1996), rather than the Konno–Ohmachi smoothed Fourier spectrum. As described before, we divide the complete time window (usually 20–40 min long) in 1 min subwindows, each one processed in the same way. We obtain the ST of each trace and compute the total horizontal energy by adding the amplitude of both horizontal components, without including the phase. Next, for each time step, we compute the HVSR for a frequency range from 0.1 to 10 Hz; the final HVSR curve is the overall average of all subwindows. Given the fact that the ST considers nearby values for each frequency, we cannot use the standard deviation as an estimation of the error for each point. Therefore, we estimate it by considering the value where 68.2% of the observations from all subwindows are considered; some examples are shown in Figure 2. To simplify the interpretation of the HVSR results, we relate the peak amplitude to an amplitude classification (HVSRamp), as proposed by Idini et al. (2017) and shown in Figure 2. In this figure, we present the amplitude classification of HVSRamp: curves with HVSR amplitude lower than 2 (flat curve) classified as HVSRamp = 0, curves with HVSR amplitude from 2 to 3 correspond to HVSRamp = 1, curves with HVSR amplitude from 3 to 5 are classified with HVSRamp = 2, and curves with HVSR amplitude from 5 and above with HVSRamp = 3. For those curves with HVSRamp ≥ 1 (HVSR peak amplitude larger than 2), the predominant frequency is defined as the corresponding frequency at the peak. Estimations of the predominant frequency from strong-motion records, as done in Zhao et al. (2006) are presented in a companion paper (Leyton et al., 2017).

In the present study, we mostly used the SPatial AutoCorrelation (SPAC) methodology, first proposed by Aki (1957) and later modified for more general configurations by Chávez-García et al. (2005, 2006). This methodology has shown to be able to explore the characteristics of the dispersion curves in the lower frequency range (Humire et al., 2014). Furthermore, we complement these results with the method recently proposed by Ekström et al. (2009), who noticed that the same methodology can be further used to higher frequencies, by focusing on the zero crossings (Ekström, 2014). Pastén et al. (2016) have successfully applied these techniques to determine deep layers of the Santiago basin; in the present study, we were able to apply this methodology to characterize the shallower layers, focusing on frequencies from 10 Hz and above.

Finally, the inversion from the obtained dispersion curves to the S-wave velocity profile was performed using the neighborhood algorithm (Sambridge, 1999), appropriately adapted for this case by Wathelet (2005, 2008). For the inversion, we included the autocorrelation results, from the SPAC method, in addition to the dispersion estimates from the zero crossings of the autocorrelation ratios (Ekström et al., 2009). For those sites with a defined predominant frequency (i.e., with HVSRamp ≥ 1), we also included the average curve in the inversion, as done in previous studies (Picozzi et al., 2005; Pilz et al., 2010; Gouveia et al., 2016). The inclusion of the HVSR curve enables the analysis of the deeper parts of the profile, usually giving insights to the contrast between soils and the underlying bedrock. In the present study, we assume that the HVSR curve represents the ellipticity of the Rayleigh wave. A general example is shown in Figure 3, using dispersion curve, dispersion estimates from the zero crossings of the autocorrelation ratios, and HVSR for the inversion. From this example, we can see that the shallow part of the profile is determined from the dispersion curve, considering frequencies above 4 Hz. On the other hand, the deeper parts of the profile are mainly constrained by the ellipticity curve, including the lower end of frequencies, below 4 Hz for this case.

RESULTS

We were able to successfully obtain 163 S-wave velocity profiles and predominant frequencies for seismological stations’ sites of the Chilean Seismic Network, as shown in Figure 1 and Table S1. A histogram of the latitudinal distribution of the sites’ classification is presented in Figure S2. From this Figure S2, we see that even though we still need to measure a considerable number of stations, the northern Chile (north of ~35°S) is characterized to have V_{S30} ≥ 350 m/s (class C and above, according to the V_{S30} classification shown in Table 1). On the other hand, south of 39°S, most of the stations are characterized to have V_{S30} ≤ 500 m/s, mostly classes C and D, with few E from the V_{S30} classification presented in Table 1. These preliminary observations need to be revised upon the completion of the site characterization of the whole network.

To improve our understanding of the results, we plotted V_{S30} as a function of the predominant frequency for each site (see Fig. 4); the HVSRamp is shown as the size of the cross (see Fig. 4 caption for details). In Figure 4, the black squares mark
the average predominant frequency for classes B, C, and D. We expect to have an inverse correlation between V_{S30} and the HVSR$_{amp}$: sites with soft soils (lower V_{S30} values) should have a larger impedance contrast with the basement rock, producing larger HVSR$_{amp}$. On the other hand, the predominant frequency depends not only on the S-wave velocity values but also on the soil’s thickness; hence, no clear correlation should be found due to the lack of information of this last parameter. From Figure 4, we can see that there is no clear correlation between V_{S30} and the predominant period, as has been proposed in some seismic design codes (e.g., Japan Road Association, 1980, 1990); nevertheless, it might be suggested that for sites with $V_{S30} \leq 500$ m/s, they mostly show predominant frequencies lower than 3 Hz (marked with a dashed line in Fig. 4). Furthermore, we computed the Spearman correlation coefficient (r_s) between V_{S30}, predominant frequency, and HVSR$_{amp}$. We found almost no correlation between the predominant frequency and the HVSR$_{amp}$ ($r_s = 0.0785$), as suspected. On the other hand, we obtained a slightly higher correlation between the V_{S30} and the HVSR$_{amp}$, but still very low ($r_s = 0.3399$); this might be due to the fact that V_{S30} is not always a good estimator of the average S-wave velocities in the soils and the implied impedance contrast with the bedrock. Finally, the best correlation was found between the V_{S30} and the predominant frequency, with a value of $r_s = 0.5494$, despite the limitations of V_{S30} as an indicator of the average S-wave velocities in the soils and the need to specify the soil’s thickness.

For our data set, out of the 163 sites studied, 40 of them presented no clear predominant frequency from 0.1 to 10 Hz.
(flat curves), shown in the right panel in Figure 4, representing a 25% of the total. For these sites, 94% of them have V_{S30} above 640 m/s; only three cases present V_{S30} values lower, indicating that flat curves do not necessarily imply high V_{S30}.

FINAL COMMENTS

In this study, we report preliminary results of the geophysical characterization of the Chilean Seismological Network, managed by CSN, mostly using active- and passive-source surface-wave array methods, and the HVSR method. The geophysical characterization using these methods was particularly difficult due to the fact that most of these stations are located in moder-
erate-to-large cities, with high urban noise. We successfully explore 163 stations, using array-based and three-component microtremor measurements. The most reliable methods used in the present study were SPAC (Aki, 1957) and its extension to higher frequency considering only the zero crossings (Ekström et al., 2009; Ekström, 2014). We found that there is no clear correlation between the site’s predominant frequency and the HVSR amplitude ($HVSR_{amp}$); however, there seems to be a slight correlation between the average S-wave velocity in the upper 30 m (V_{S30}) and the predominant frequency: from our results, sites with $V_{S30} \leq 500$ m/s appear to have a predominant frequency lower than 3 Hz. We believe that this information will contribute to the understanding of the strong-motion shaking produced by large-to-moderate earthquakes, especially in sites where most of the Chilean population live.

DATA AND RESOURCES

The authors, using instruments from the Department of Geophysics of University of Chile, and Departments of Civil Engineering from P. Catholic University of Chile and University of Concepción, collected the data used in this study. The information on Chilean Strong-Motion Database (2017) can be found at etvdb.csn.uchile.cl, which is managed by National Seismological Center. The data on Centro Sismológico Nacional (CSN) (2017) are available at www.csn.uchile.cl (Universidad de Chile). The other data are from www.tromino.eu (Tromino, from Moho, Science and Technology).

ACKNOWLEDGMENTS

The authors would like to thank the Geopsy Team for making freely available its software for the processing of microtremors (Warhelet, 2002–2011). The authors thank S. Molnar, an anonymous reviewer, and Editor-in-Chief Zhigang Peng for their valuable comments that greatly improved this article. The article also would like to thank C. Benitez, S. Droguett, L. Podestá, and P. Troncoso for their help during the Tarapacá campaign and J. Salomón for his help during the Coquimbo campaign. Figures were made using Generic Mapping Tools (GMT) software (Wessel and Smith, 1998). The authors acknowledge the support of the National Fund for Scientific and Technological Research (FONDECYT) Project No. 1170430.

REFERENCES

F. Leyton
A. Leopold
G. Hurtado
Centro Sismológico Nacional

Universidad de Chile
Blanco Encalada 2002
Santiago, Chile
leyton@csn.uchile.cl
aleopold@csn.uchile.cl
ghurtado@csn.uchile.cl

C. Pastén
Department of Civil Engineering
Universidad de Chile
Blanco Encalada 2002
Santiago, Chile
cpasten@ing.uchile.cl

S. Ruiz
Department of Geophysics
Universidad de Chile
Blanco Encalada 2002
Santiago, Chile
srueiz@dgp.uchile.cl

G. Montalva
Department of Civil Engineering
Universidad de Concepción
Casilla 160-C, Correo 3
Concepción, Chile
gmontalva@udec.cl

E. Saéz
Department of Structural and Geotechnical Engineering
La Pontificia Universidad Católica de Chile
Av. Vicuña Mackenna 4860
Macul, Chile
esaez@ing.puc.cl

Published Online 7 February 2018