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A B S T R A C T

This paper combines data from laboratory, centrifuge testing, and numerical tools to highlight the predictive capabilities of the Bayesian method for uncertainty
quantification and propagation. The Bayesian approach is employed to estimate uncertain parameters of a multi-yield constitutive model using data from cyclic-
triaxial testing. Then, predictive capabilities of a finite element model in reproducing the dynamic response of a saturated sand deposit are investigated by drawing
samples from the estimated posterior probability distributions of the constitutive model parameters. Variability of the predicted responses due to estimation un-
certainty is evaluated. The response of centrifuge tests is used to assess the simulated responses.

1. Introduction

The understanding of earthquake-induced liquefaction phenomena
is of vital importance in earthquake engineering and hazard assessment.
The rapid cyclic shearing of saturated loose sand induces an undrained
response of granular material, increasing the excess pore water pres-
sures with each cycle of loading and simultaneously reducing the ef-
fective stresses, and therefore, the stiffness of the soil. When excess pore
pressure increases up to a value that eventually reaches the initial ef-
fective stress, a transient state of zero effective stress is reached, trig-
gering the liquefaction of the soil, and causing significant deformations
with catastrophic consequences [1,2]. The 1964 Mw 7.6 Niigata and
1964 Mw 9.2 Alaska Earthquakes highlighted the crucial and devas-
tating effects of liquefaction on modern geotechnical and civil infra-
structure [3]. Recently, large earthquakes, such as the 2010 Mw 8.8
Maule [4], 2010 Mw 7.1 Christchurch [5], and the 2011 Mw 9.0 Tohoku
Earthquakes [6] have also presented severe cases of liquefaction in
sandy soil deposits. In addition, and provided the described context
above, other liquefaction criteria have been defined, with the intention
to consider the large deformations -that occur at a high rate- once the
100% of excess pore pressures are reached in triaxial testing. These
criteria consider 2.5, 5, and 10% of axial deformations in double am-
plitude [7,8]. These definitions are very useful for liquefaction design,
although liquefaction characterization is difficult at large strains,

generally due to equipment compliance as the strain rates are sig-
nificantly high.

Liquefaction has been widely studied in the laboratory as well as in
the field. On the one hand, laboratory studies have considered the use
of apparatuses that can apply cyclic shear loading and an undrained
response in either stress or strain controlled conditions, causing lique-
faction. Among the most common equipment are cyclic triaxial, direct
simple shear, and torsional shear tests, which are used to investigate the
dynamic behavior and pore pressure response of soils subjected to
cyclic loading [9]. These tests, however, are affected by sampling dis-
turbance and are limited in their ability to replicate stress paths ob-
served in the field [9]. On the other hand, in the field, standard en-
gineering practices in the assessment of liquefaction are usually based
on tests such as the Standard Penetration Test (SPT), Cone Penetration
Test (CPT), or in-situ shear wave velocity tests [10–12]. These meth-
odologies have been empirically calibrated based on field case histories
of liquefaction and no liquefaction cases, leading to quite reliable re-
sults. Other alternative approaches present significant opportunities to
be considered for liquefaction studies, including strain-based and en-
ergy-based approaches, as well as computational approaches [11,13].

In the context described above, physical modeling appears as a
significant and appealing alternative to overcome laboratory and field
testing drawbacks to study liquefaction phenomena. In the last decades,
advances in physical modeling, including large-scale [14–16] and
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centrifuge testing [17,18], have led to improved capabilities in re-
presenting the in-situ conditions of saturated soils under earthquake
loading and liquefaction phenomena. Centrifuge modeling is particu-
larly advantageous since scaling allows reduced-scale models to re-
present the full scale of the field conditions at a fraction of the cost of a
large-scale test [19]. Although it has been recognized that there is
significant variability in centrifuge modeling of excited soil deposits,
recent research efforts have shown improved capabilities in the con-
sistency and repeatability of the centrifuge modeled response [17,20].
Dobry et al. [21], for instance, confirmed that centrifuge testing could
reproduce realistic results in agreement with the liquefaction response
of sandy deposits in the field subjected to the 1989 Mw 6.9 Loma Prieta
Earthquake in California.

In spite of the significant contribution that laboratory, field testing,
and physical models have provided to the state of the art on liquefac-
tion phenomena, the development of numerical simulations with well-
defined theoretical constitutive models is often the only viable tool for
the estimation of the dynamic and pore pressure response of specific
sites prone to liquefaction. Such analyses require a precise geotechnical
characterization and the selection of a suitable constitutive model.
Some plasticity-based constitutive models have been developed to
predict the stress-strain and pore water pressure response of granular
soils [22–25]. Mechanics-based numerical methods incorporating such
constitutive models are being employed increasingly in engineering
practice due to their cost efficiency and their detailed prediction cap-
abilities for the evaluation of the liquefaction potential of soil deposits
[13,26,27]. Remarkable efforts such as VELACS [28] and LEAP
[17,27,29], have been devoted to better understand the variability as-
sociated to numerical modeling. Prevost and Popescu [28], for instance,
reported "Class A" numerical predictions yielding a close estimation of
the recorded pore pressure response of several experimental models.
However, several authors have highlighted the need for further efforts
in the assessment of the capabilities and accuracy of the available
computational tools [29,30].

Since any numerical model is an approximation of the system being
represented, when using a numerical tool to predict the response of a
dynamic system, different sources of uncertainty arise because of the
random nature of the problem being tackled. These sources of un-
certainty are usually categorized into model parameter uncertainty,
model structure uncertainty (i.e., modeling errors), and measurement
noise. In particular, an adequate numerical prediction of the dynamic
and pore pressure response of a seismically excited soil deposit requires
a suitable calibration of the model parameters. Different model up-
dating approaches, including those of deterministic and probabilistic
nature, have been proposed and investigated in laboratory settings and
site characterization problems [31–39]. In this context, the effect of
different sources of uncertainty, including material spatial variability,
modeling uncertainty, and measurement noise, are significant [40,41]
and lead to significant levels of uncertainty in the identification of
model parameters [32,42,43]. The effect of the uncertainty in model
parameters on the estimation of a deposit's dynamic response is often
unknown or ignored; the reliability and variability of predicted accel-
eration and pore pressure time histories associated to model parameter
uncertainty are usually not well understood [41]. Some authors have
studied the effects of spatial variability on the response of geotechnical
systems [44–47], and yet there is still a need to better assess the impact
of the uncertainty in the calibration of the parameters on the modeled
dynamic response of liquefiable sandy soil deposits.

This study presents the implementation of a Bayesian (probabilistic)
approach accounting for distinct sources of uncertainty for the cali-
bration of constitutive soil models in order to achieve a better under-
standing of the predictive capabilities of numerical simulations in the
response of liquefiable soils. For the presented analysis, experimental
data from undrained cyclic triaxial testing conducted on clean Ottawa
sand [8] is first employed to estimate the model parameters of a pres-
sure-dependent multi-yield constitutive model (PDMY02) [22,48]. A

Bayesian estimation approach is used, obtaining the joint probability
density function (PDF) of the model parameters to be estimated. These
analysis results are then used to assess the effects of the uncertainty in
the identified parameters on the predictive capabilities of a finite ele-
ment (FE) model in simulating the dynamic response of a saturated
sand deposit. Samples from the posterior PDF of the model parameter
estimated using the triaxial test data are drawn; then the estimation
uncertainties are propagated through the FE model to compare mea-
sured and FE-predicted responses (acceleration and pore water pressure
time histories). Numerical predictions are compared to the response of
reduced-scale centrifuge models tested in a laminar box using the
geotechnical centrifuge at the Rensselaer Polytechnic Institute (RPI). It
is worth noting that the analysis of large shear deformations generated
at low confinement is excluded in this work because of the considerable
variability observed in both laboratory settings and numerical simula-
tions. Centrifuge tests, for instance, have shown significant variability
in the achieved permanent displacement of excited deposits [30]. In
addition, since the characterization of large strain response is often
compromised in conventional laboratory settings due to equipment
compliance at such high strain rates, the validation of the permanent
displacement response of numerical models still poses an unsolved
challenge [30]. The consideration of these large displacements into the
presented analysis would require considerable increased complexity
into the implemented material characterization, which is beyond the
scope of this paper.

The objective of this work is to illustrate the capabilities of the
Bayesian technique to estimate the parameters of a constitutive soil
model using laboratory test data, and to quantify the uncertainty as-
sociated to the calibration procedure, while assessing correlations be-
tween estimated parameters. It also intends to show that an adequate
characterization of the uncertainty in the estimated parameters of the
constitutive model allows for a proper assessment of the modeled dy-
namic response of a deposit subjected to base acceleration. It is worth
noting that the procedure presented in this paper is of significant re-
levance for current engineering applications; in engineering practice,
the response of a soil deposit is typically predicted based on scarce
laboratory data conducted to characterize the soil properties. An ade-
quate quantification of the uncertainty in the modeled response asso-
ciated to the calibration process will result in improved credibility and
better understanding of the predictive capabilities of available com-
putational tools.

2. Soil triaxial testing

2.1. Soil material description

The soil used is clean uniform silica Ottawa Sand (Cu=1.9,
Cc=0.89), with particle size distribution in the fine-to-medium range
(0.10–0.60mm), with less than 1% of fines. Sand particles have
rounded to subrounded shape, soft gray color, and diameters ranging
between 0.15mm and 0.85mm (D10∼0.2mm, D30∼0.26mm,
D50∼0.33mm, D60∼0.38mm, Fig. 1a). The maximum and minimum
void ratios are emin=0.480 and emax=0.783 [8]. Fig. 1b shows
Scanning Electron Microscope (SEM) images of clean Ottawa sand
grains, obtained using an FEI Quanta 3D field emission SEM. Imaging of
the sand was conducted in low vacuum mode using a low vacuum
secondary electron detector (LVSED). The images illustrate the uniform
size and rounded nature of Ottawa sand and highlight a rather
“smooth” surface topography of the grains. In the context of the chart
proposed by Krumbein and Sloss [49], particles present a sphericity
between 0.7 and 0.9 and a roundness between 0.5 and 0.7.

2.2. Experimental setup

The experimental data were obtained from cyclic undrained con-
solidated triaxial testing performed on the Ottawa sand described in
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Section 2.1. The setup used to obtain this type of data was the CKC
system (Soil Testing Equipment) [7,8]. The sand specimen for cyclic
testing was prepared by dry pluviation, an efficient technique to build
laboratory sand specimens, preventing particle crushing, and reducing
segregation [50,51]. The sand was placed in a sealed plastic container
which is connected to a copper pipe of 15 cm length to control the
pluviation and a valve to control the sand flow. The material was
pluviated inside the triaxial split mold (covered with latex membrane)
to build the cylindrical specimens with geometrical dimensions of
15 cm in length and 7 cm in diameter. The initial dry density of the soil
was of 1590 kg/m3, with a skeleton relative density
D e e e e( )/( )r max max min= ≈ 40% based on the skeleton void ratio e
and the limiting void ratios emax and emin. The sand specimens were
flushed with carbon dioxide (CO2) to reduce the maximum amount of
air in the void volume of the sand specimen, to ease the permeation of
deaired deionized water in the granular sand matrix. Once the specimen
reached saturation from an experimental perspective, i.e. Bvalue>0.95,
the sample was isotropically consolidated to an effective initial mean
confining stress of p 100kPa= . After consolidation, the drainage valves
were closed, and the cyclic shearing was initiated. Cyclic loading under
undrained conditions was performed by applying a sinusoidal devia-
toric vertical stress (q) at a loading frequency of 1 Hz. During cyclic
loading, the response of the soil was monitored in terms of the vertical
axial strain (ε1) and the generated excess pore pressure Δu= u – u0,
where u is the measured total pore pressure and u0 is the initial hy-
drostatic pore pressure. More details on the experimental setup are
given in Ochoa-Cornejo et al. [7,8]. The experiment results are dis-
cussed along with numerical modeling results in Section 4.2.

3. Soil constitutive model

There is a significant amount of studies related to the numerical
modeling of soil liquefaction and flow failure of sands [52]. This study
implements the PDMY02, which stands for Pressure-Dependent Multi-
Surface Plasticity Model [22,48], available in the open-source software
platform OpenSees [53]. This model has known limitations such as a
lack of a formal expression for state dependence and the omission of
Lode angle effects [22]. However, the model offers considerable sim-
plicity in the definition of its constituting material parameters and has
been successfully implemented in the prediction of the seismic response
of geotechnical systems [54,55].

The multi-yield function approach introduces a set of several conical
surfaces in the principal stress space, with the hydrostatic axis coin-
cident with the apex of all the surfaces (Fig. 2a). The hardening rule to
generate the hysteretic response under any arbitrary cyclic shear
loading is a modified version of the Mroz Hardening Rule [56], in
which the yield surfaces translate in stress space within the failure

envelope. The translation of the yield surfaces enables a hysteretic and
path dependent stress-strain response. The configuration of the yield
surfaces allows for a piecewise linear approximation of the stress-strain
behavior of the material. Relevant aspects of the model are briefly
summarized below. More details on the Multi-Surface Plasticity Models
can be found elsewhere [22,57].

3.1. Stress-strain

The implemented model represents the nonlinear stress-strain be-
havior of the soil by introducing a definition of the backbone curve
proposed by Kondner [59]:

G
1 / ref

max=
+ (1)

In Equation (1), and are shear stress and strain, respectively,
Gmax is the small-strain shear modulus at a reference mean effective
confining pressure p r , G/ref max max= is a reference shear strain at p r ,
and max is the shear strength of the soil at p r . The shear strength at p r
can also be expressed in terms of the shear strength friction angle of the
soil, , and is given by:

G p2 2 sin
3 sinref rmax max= =

(2)

The stiffness dependency of the material with respect to the effec-
tive confining pressure p is given by G G p p( / )r

d
max= , where G is the

small-strain shear modulus at a mean confining pressure p , and d is a
material parameter considered equal to 0.5 as suggested for sands [9].
In this work an arbitrary value of p 100r = kPa (≈1 atm) has been used
for convenience; therefore reported values of Gmax correspond to an
effective mean confining pressure of 100 kPa. The bulk modulus of the
soil skeleton, B, relates to the shear modulus by
B G2 (1 )/(3 6 )= + , where is the Poisson's ratio.

3.2. Flow rule

This model introduces a non-associative rule to define the plastic
flow. The deviatoric component of the plastic strain increment is
normal to the yield surfaces, while the rate of plastic volumetric strain
is defined based on the phase transformation (PT) surface concept [60].
This surface indicates a transition in the behavior of the soil from
contractive to dilative under monotonic undrained shear loading, as
depicted in Fig. 2b. Following suggestions of the pioneering work of
Prevost [57], the location of the stress state is inferred based on the
value of the stress ratio q p/= , where q is the von Mises stress. If the
stress ratio along the PT surface is defined as PT , then for stress states
having PT< (loading inside the PT surface), or for PT> (loading
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Fig. 1. (a) Ottawa sand grain size distribution, and (b) SEM image of a group of Ottawa sand particles [7].
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outside the PT surface) with 0< ( : time rate of ), the soil will ex-
hibit a contractive tendency under undrained loading (see stress paths
from a to b and from c to d in Fig. 2b). For stress states having PT>
(loading outside the PT surface) with 0> , the soil will exhibit a di-
lative tendency (see stress path from b to c in Fig. 2b). The stress ratio
associated to the PT surface can also be expressed in terms of a PT
angle, PT , as follows:

6 sin
3 sinPT

PT

PT
=

(3)

For loading associated to a contractive tendency, the flow rule is
defined by:

c 3 6
2

1vol
p

eq
p

PT
1

2

=
(4)

In Equation (4), vol
p and eq

p are the volumetric and deviatoric plastic
strain increments, respectively, defined as tr ( )vol

p p= , and
:eq

p
dev

p
dev

p2
3= , where dev

p p
vol

p1
3= (with δ: second-order iden-

tity tensor). The parameter c1 >0 is a material constant to add flex-
ibility in adjusting the volumetric response. Under undrained condi-
tions, a larger c1 represents a larger contractive tendency in the
material, resulting in a higher pore water pressure buildup rate.

For loading associated to a dilative tendency, the flow rule is de-
fined by:

d(1 ) 3 6
2

1vol
p

eq
p

PT
1

2

= +
(5)

In Equation (5), d1 >0 is a calibration constant controlling the di-
lative tendency of the soil.

4. Model calibration and uncertainty quantification

4.1. Parameter estimation approach

4.1.1. Bayesian inference
The technique of Bayesian inference updates the probability dis-

tributions of a set of uncertain model parameters m
n 1m × that de-

fine a model class mM based on a set of measured responses
i ry y{ , 1, ..., }i

n 1y= =× , where ny is the number of measured re-
sponses and r denotes the number of data points in each response. The
discrepancy between the observed (measured) data and the prediction
of the model at a discrete time ti can be expressed as

e y h ( | )i i i m m= M (6)

In Equation (6), h ( )i is the nonlinear response function of a model
belonging to the class mM and ei is the prediction error at time ti and
includes the effects of uncertainties in the measurement, computation,
and modeling. Herein, the model class for the prediction error and the
variables parametrizing the prediction error are denoted by eM and

e
n 1e × , respectively. Based on previous information available, prior

probability distributions can be assigned to the model parameters and

the prediction error parameters, denoted by ( | )m m mM and ( | )e e eM ,
respectively. Then, the Bayes’ theorem is used to update the combined
parameter vector ( , )m e

n n( ) 1m e= + × given the observed (mea-
sured) data y and the model classes mM and eM , i.e., to obtain the
posterior probability distribution of the parameters,

p p
p

y y
y

( | , ) ( | , ) ( | )
( | )

=M
M M

M (7)

In Equation (7), ( | ) ( | ) ( | )m m m e e e=M M M is the combined
prior probably distribution of the parameters, i.e., the parameters m
and e are considered independent, { , }m e=M M M , p y( | , )M is the
likelihood function, and p p dy y( | ) ( | , ) ( | )=M M M is the evi-

dence of the model classM , where denotes the parameter space of ,
and is chosen such the posterior probability distribution p y( | , )M

integrates to one.

4.1.2. Model class of the prediction error
A Gaussian distribution with zero mean and time-invariant covar-

iance matrix ( )e
n ny y× is assumed for the prediction error, i.e.,

e 0( , ( ))i eN i r1, ...,= [61]. It is also assumed that the pre-
diction errors are uncorrelated between different measurements and
therefore ( )e is a diagonal matrix with entries corresponding to the
variances associated to the different measured responses, i.e.,

( )e j jk
2= where jk is the Kronecker Delta, with j k n1, ..., y= = ,

while j are the standard deviations to be determined by the Bayesian
estimation.

4.1.3. Likelihood function
Based on the assumption that the prediction error is modeled as a

stationary, zero-mean, independent Gaussian noise vector process, from
Equation (6) it is obtained that the likelihood function is given by [62]:

p Jy( | , ) ( )
(2 )

exp 1
2

( ; )
i

r
e

n i
1

1/2

/2y
=

=
M M

(8)

In equation (8), the term J ( ; )i M is given by:

J y h y h( ; ) [ ( | )] ( )[ ( | )]i i i m m
T

e i i m m
1=M M M (9)

Equation (9) represents the weighted goodness of fit between the
observed and model-predicted responses.

4.1.4. Prior probability distributions
When the amount of data is small, the prior probability distributions

may significantly influence the posterior probability distributions of ,
therefore, usually non-informative priors (uniform probably distribu-
tions) are assumed. Likewise, when the number of model parameters to
be estimated is large, Gaussian prior may help to avoid identifiability
problems [63].

4.1.5. Posterior probability distributions
When a significant amount of data is available, p y( | , )M can be

approximated by a Gaussian distribution centered at the most probable
value for the model parameters and the uncertainty in the estimation
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Fig. 2. (a) Graphic representation of the yield functions, and (b) schematic response for undrained shear loading [22,57,58].
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can be approximated by the inverse of the Hessian matrix evaluated at
the most probable parameter values [64]. Otherwise, the solution of
multi-dimensional integrals should be performed. However, these
cannot be directly computed in most problems involving several para-
meters to be estimated, and therefore, sampling algorithms (e.g., Me-
tropolis-Hastings, Gibss, Markov Chain Monte Carlo, and Slice) [65] are
employed to approximate the posterior joint probability distribution of
the model parameters using Equation (7).

From the estimated posterior probability distributions of the model
parameters, an estimate of the model parameters can be computed.
Usually, the maximum a posteriori (ˆ MAP) is employed, which can be
obtained from the maximum of the posterior probability distribution,
i.e.,

p yˆ arg max[ ( | , )]MAP = M (10)

Equivalently, from the minimum of the negative natural logarithm
(ln[ ]) of the posterior probability distribution, i.e.,

p yˆ arg min[ ln[ ( | , )] ln[ ( | )]]MAP = M M (11)

4.2. Model updating results

The Bayesian approach is employed to calibrate the numerical
model presented in Section 3 using the experimental data collected
from the laboratory cyclic triaxial test described in Section 2. Only one
test was used for the model updating since the use of several tests would
introduce further uncertainty associated to test-to-test variability, while
this works focuses on estimation of uncertainties stemming exclusively
from the model calibration procedure. Furthermore, the use of only one
test is representative of common engineering practice, in which the
availability of laboratory data is often limited. Other laboratory tests,
however, are used for verification purposes in Section 4.3.

Stresses from the experimental triaxial test are introduced into the
numerical formulation of the constitutive model described in Section 3
along with a set of parameters, m, to predict a material response, h,
defined in terms of strains and pore water pressure. The measured re-
sponse vector is assembled as y ,i

u
u

T( )
( )

( )
( )

v i
v

i
max max

= , where ( )v i and u( )i

are the vertical strain and the excess pore water pressure from the
triaxial test measured at time ti, respectively, and ( )v max and u( )max are
the maximum measured values of vertical strain and the excess pore
water pressure, respectively. The modeled response vector is likewise

assembled as h ,i
u

u

T( )
( )

( )
( )

vm i
v
m

m i
mmax max

= , where ( )v
m

i and u( )m
i are the

vertical strain and the excess pore water pressure estimated through the
constitutive model at time ti, respectively, and ( )v

m
max and u( )m

max are
corresponding maximum values of vertical strain and the excess pore
water pressure from the numerical modeling. The vector of model
parameters to be estimated are G c d[ ]m PT

T
max 1 1 6 1= × ,

and a single standard deviation is considered as a prediction error
parameter, i.e., e e

1 1= × . Therefore, the parameter vector to be
estimated is G c d[ ]PT e

T
max 1 1 7 1= × . Gaussian prior

probability distributions with the mean and standard deviation shown
in Table 1 are assumed, with µ( , )N denoting a Gaussian distribution
with mean µ and standard deviation . Mean values were estimated

based on previous analysis of laboratory results [7,66], and standard
deviations were selected based on estimations suggested by previous
geotechnical research [40]. Prior probability distributions for para-
meters specific to the implemented constitutive model (namely, c1 and
d1) were selected based on recommended ranges by Yang et al. [48].

The slice sampling algorithm [67] is used to draw 5000 samples
from the natural logarithm of the posterior probability distribution. The
slice sampling method is attractive because it automatically adjusts the
step size to match the characteristics of the posterior PDF. To generate
samples after the Markov chain has reached stationarity, 500 samples
are first generated and discarded before the 5000 final samples are
generated. Fig. 3 shows the samples drawn from the posterior dis-
tribution of the model parameters. Marginal distributions are depicted
in the diagonal entries of the plot matrix, where the prior distributions
(unnormalized) are shown in red color and the histograms of the pos-
terior distributions in dark blue. In these plots, a total of ten bins is
considered, and the frequency counts of the highest bin are shown at
the top-right corner. Table 2 summarizes some statistics of the para-
meter estimation results, including the maximum a posteriori values
(MAP), mean values (µ), standard deviations ( ), and coefficients of
variations (c o v. . .). The off-diagonal panels of Fig. 3 plot the projection
of the samples in the corresponding two-dimensional spaces of the
model parameters. These plots show the inter-relationships between the
different parameters, where the positive correlation between and PT
and the strong negative correlation between and c1 are observed. The
correlation between and PT suggests that for the development of the
recorded experimental increase and decrease of excess pore water
pressure associated to the contractive and dilative phases of the soil, a
certain ratio between and PT must be maintained. It is possible that
some of the scatter in the distribution of may be attributed to the fact
that the constitutive model does not incorporate the Lode angle effect
and thus it does not differentiate between shear strength in triaxial
compression and extension. The strong negative correlation between
and c1 is expected given that both parameters have a direct incidence on
the volumetric deformations of the material. As mentioned earlier, a
larger value of c1 results in a higher tendency towards volumetric
contraction (Equation (4)), while a larger value of , on the other hand,
yields a larger bulk modulus (B) which results in a reduced tendency
towards volumetric contraction. There is also evidence of some degree
of positive correlation between and c1 and PT and d1. This is expected
since, as evidenced by Equations (4) and (5), the definition of the vo-
lumetric rate of plastic strains depends on both contractive and dilative
calibration parameters c1 and d1, as well as on the location of the PT
surface, which is related to and PT . Finally, some minor negative
correlation between and d1 is also detected. This can also be explained
by the volumetric effects of both parameters. As expected, e is not
correlated to the material model parameters. The inter-parameter cor-
relations imply that the prediction capabilities of the model do not
change significantly if the correlated parameters are increased/de-
creased appropriately. It is noted that a high value is estimated for the
Poisson ratio (see Table 2); this is due to its high correlation with
parameter c1. These identifiability issues can be improved if more in-
formation (from measurement data or in the prior distributions) is in-
cluded in the goodness of fit between the observed and model predicted
responses (see Equation (9)).

Fig. 4 shows the excess pore water pressure response and the re-
sulting vertical strains for the experimental triaxial test. This figure also
shows the numerical response obtained by using MAP of model para-
meters. Ranges for numerical responses computed for 100 selected
samples of m are also shown in Fig. 4. These 100 samples were ran-
domly selected from the generated Markov chain, considering only sets
of parameters for which each of the model parameters were within one
standard deviation of the mean values of the posterior distributions.
Computed excess pore pressure responses show a good agreement with
the experimental response. Amplitudes of computed vertical strains, on
the other hand, are somewhat lower than the experimental ones

Table 1
Prior probability distributions assumed for the model parameters to be esti-
mated.

Parameter Prior Parameter Prior

(35 , 5 )N c1 (0.1, 0.06)N

Gmax kPa kPa(93000 , 2500 )N d1 (0.1, 0.05)N

PT (30 , 5 )N e (0.2, 0.4)N

(0.3, 0.1)N
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recorded after a significant reduction of the effective confinement (see
t s50 in Figs. 4 and 5). A better description of such large permanent
strains could have been achieved through the introduction of additional
“damage” parameters, such as those proposed by Yang et al. [22]. As
mentioned in the Introduction, such additional parameters were not

considered as it is beyond the scope of this work since this study mainly
focuses on the acceleration and excess pore pressure response, and the
inclusion of additional parameters would increase the complexity in the
analysis. The computed and experimental effective stress paths show a
good agreement between them (Fig. 6). The contractive tendency is

Fig. 3. Parameter estimation results for the constitutive soil model using the cyclic triaxial test data: marginal distributions in the diagonal and scatter plots of the
sampled posterior distributions in the off-diagonal entries.

Table 2
Statistics of the marginal distributions of the model parameters.

Parameter ( )° G kPa( )max ( )PT ° ( ) c ( )1 d ( )1 ( )e

MAP 40.7 90820 32.9 0.37 0.12 0.10 0.16
Mean value (µ) 40.5 89747 32.9 0.36 0.12 0.11 0.16
Standard deviation ( ) 2.1 2538 2.2 0.04 0.04 0.04 0.01
Coef. of variation (%) 5.2 2.8 6.7 11.7 31.5 42.0 5.0
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Fig. 4. (a) Excess pore water pressure, and (b) vertical strain response for the experimental triaxial test and numerical simulations.
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well captured by the numerical model, leading to a reduction of ef-
fective confining stress with cyclic loading that closely matches the
experimental results. The dilative phase of the numerical simulations is
also in close agreement with the experiment, exhibiting a regain of
effective confinement and an increase in deviatoric stress as the stress
state surpasses the PT surface. Ranges of computed responses show
relatively little scatter for the predicted excess pore pressure response
for the selected samples of m (Fig. 4); computed vertical strain re-
sponses show a somewhat larger scatter mainly for predictions of large
strains at low effective confinement.

The implementation of the Bayesian analysis has yielded an esti-
mation of the model parameters describing the observed material be-
havior. The analysis has also quantified the estimation uncertainty for
each of the model parameters. In this case, the associated uncertainty is
stemming from one single triaxial test; if several tests had been used,

the resulting uncertainty in the parameters estimation could have been
higher due to the test-to test variability. The correlations between
model parameters (observed in Fig. 3) evidenced a lack of uniqueness in
the identification of an optimal set of model parameters, further in-
creasing the uncertainty of the estimated parameters. The effects of
including the uncertainty of the estimated parameters in the modeling
of the dynamic response of the deposit are explored in the subsequent
sections of this document.

4.3. Verification of updated model parameters using additional
experimental tests

Results of the model updating were verified on two additional soil
tests: a triaxial test and a direct simple shear test. Both tests were
conducted using clean Ottawa sand similar to that described in Section

Fig. 5. Stress-strain cycles for (a) the experimental triaxial test, and (b) numerical simulation using maximum values of the posterior distributions of parameters.
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Fig. 7. (a) Excess pore water pressure, and (b) effective stress paths for the experimental triaxial test and numerical simulations.
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2. The triaxial and direct simple shear tests had initial dry densities of
1560 kg/m3 and 1576 kg/m3, respectively. The relative differences
between these achieved densities and the density of the triaxial test
used for the calibration of the parameters is less than 2%. It should be
pointed out that these tests have different values of initial confinement.
The triaxial test was performed having an initial isotropic effective
confinement of 100 kPa, while for the direct simple shear test an initial
vertical effective pressure of 50 kPa was applied. More details on these
experiments are given by Ochoa-Cornejo et al. [7,8], and Parra [68].

Fig. 7 and Fig. 8 show the excess pore water pressure responses and
stress paths for both tests. The figures also show the numerical re-
sponses obtained by using MAP values of model parameters obtained
from the calibration of the previous test, described in Section 4.2
(Table 2). Ranges for numerical responses computed for 100 randomly
selected samples are also depicted in these figures. These randomly
selected samples correspond to sets of parameters for which each of the
model parameters were within one standard deviation of the mean
values of the posterior distributions (Table 2). The computed stress
paths (Figs. 7b and 8b) exhibit a behavior that is in agreement with
recorded responses: both computed and experimental responses show
an initial reduction of effective confining stresses with cyclic loading
followed by a regain of effective confinement as the stress state sur-
passes the PT surface. Computed excess pore pressure responses also
show a relatively good agreement with the experimental responses. For
the triaxial test, the rates of pore pressure build up show some dis-
crepancies; the implemented model yields a rapid increase in rate of
pore pressure build up while the experimental response exhibits a fairly
constant rate. The uncertainty of the calibrated model parameters led to
ranges of computed responses for the triaxial test which showed little
scatter, yielding a consistent modeled response. The range of modeled
responses for the direct simple shear test, on the other hand, is sig-
nificant. As observed in Fig. 8a, values of achieved excess pore pressure
range between approximately 32 KPa and 50 kPa at the end of the
loading (t=50 s).

It is interesting to note that the variability of material parameters
has different significance for different tests. The deviation stemming
from the calibration of parameters using a triaxial test has resulted in a
small level of uncertainty in the simulation of a different triaxial test,
while yielding significant uncertainty in the simulated response of a
direct simple shear test.

5. Verification and uncertainty propagation in the dynamic
modeling of a soil deposit

In this section, the response of FE simulations of a soil deposit under
dynamic base excitation is addressed to gain insight into the propaga-
tion of the uncertainty associated to the estimation of model parameters
into this type of systems. The model consists on a 6m saturated deposit
of a uniform layer of the Ottawa sand described in Section 2. Two
different cases are considered: (a) Case 1, in which the deposit is sub-
jected to a base excitation consisting of 15 sinusoidal cycles with 2 Hz of

frequency and peak acceleration of approximately 0.07 g, and (b) Case
2, which uses a base excitation consisting of 5 sinusoidal cycles with
2 Hz of frequency and peak acceleration of approximately 0.03 g. For
each of the considered cases, FE simulations were performed for a
collection of 100 sets of material parameters m selected from the
samples generated for the estimation of the soil constitutive model
parameters. These sets were randomly selected considering only sets of
parameters for which each of the model parameters were within one
standard deviation of the mean values of the posterior distributions.
Numerical simulations results are compared with those obtained from
reduced-scale centrifuge experiments.

5.1. Numerical model

The FE model was developed in OpenSees [53]. The deposit is
modeled in 2D using a single column of six four-node elements of 1m
length with both displacement and excess pore pressure degrees of
freedom. The base excitation is a horizontal acceleration at the base
nodes. Displacement degrees of freedom at any given depth were tied
together (both horizontally and vertically) to impose periodic bound-
aries, following modeling practices by Elgamal et al. [69] and McGann
and Arduino [70]. Pore pressure was prescribed as zero at the surface,
while the base and lateral boundaries were set as impervious [69].
Material behavior is simulated using the constitutive model described
in Section 3. Given that the material model is pressure dependent, and
that the density of the modeled sand is considered as constant
throughout the deposit, the material behavior of the whole deposit is
described by a single set of material parameters,

G c d[ ]m
T

max 1 1
6 1= × . For each simulation, a set m is

used, leading to an associated deposit response which is hereby assessed
in terms of internal accelerations and excess pore pressure buildup. It
should be mentioned that, unlike the simulated prototype deposits, an
actual model (for instance a centrifuge model) is expected to exhibit
small random variations of soil density in space, leading to a variation
of the corresponding material parameters and a consequent uncertainty
in the system response [45]. The effects of spatial variability as a source
of uncertainty, however, are not being considered in this work, since it
is focused on the evaluation of uncertainty stemming from the cali-
bration of parameters of a selected material model. The assumption of a
constant density throughout the deposit is therefore appropriate for the
purposes of this work.

5.2. Description of the centrifuge tests

The corresponding reduced-scale tests were conducted in a laminar
box under a 25 g gravity field using the geotechnical centrifuge facility
at RPI. The models were constructed using Ottawa sand, which was dry
pluviated and saturated following the standard procedures im-
plemented at RPI [71,72]. The sand was deposited aiming to achieve a
Dr=40%, matching the triaxial test described in Section 2; however, as
mentioned above, a small degree of spatial variability in the soil density

Fig. 8. (a) Excess pore water pressure, and (b) shear stress vs. effective vertical stress for the experimental direct simple shear test and numerical simulations.
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is expected given the inherent limitations of physical modeling [45].
The height of the soil models was 24 cm, representing a soil deposit
prototype with a depth of 6m at 25 g. Hereafter, prototype units are
employed when discussing centrifuge experiment results. The deposits
were subjected to the two base excitations (Case 1 and Case 2). The
response of the soil deposits was monitored using accelerometers, pore
pressure transducers, and bender elements. It should be noted that the
model was subjected to base acceleration in only one direction (1D).
The acceleration in the direction perpendicular to the input motion was
monitored and was found to be negligible. A photo of the laminar
container and a sketch of the configuration of the sensors used in the
experiment are shown in Fig. 9. More details about the experimental
setup are given by El-Sekelly [73].

5.3. Verification analysis and uncertainty propagation

Fig. 10 displays the acceleration response recorded from the cen-
trifuge tests along with a range of numerically simulated acceleration
time histories using the selected sets of m for cases 1 and 2. A generally
good agreement is achieved between numerical predictions and re-
corded responses for both cases. The following observations can be
made regarding the acceleration response:

• For Case 1, recorded accelerations are observed to decrease sig-
nificantly near the surface (z=1.9m) after approximately t=5 s,
indicating the onset of liquefaction. Computed accelerations retain
some residual strength which allows for small accelerations despite
having reached values of pore pressure indicating liquefaction, as
presented Fig. 11. At mid-depth (z=3.49m), recorded accelera-
tions depict sudden spikes. Although these types of spikes are
usually attributed to a dilative behavior of the soil [74,75], the
absence of sudden drops in pore pressure suggests that the presence
of spikes might be related to boundary effects, rather than to a di-
lative tendency in the soil. Computed acceleration time histories do
not exhibit the presence of spikes, indicating that the stress state
remained below the PT surface in the numerical simulations. In
general, computed acceleration time histories are confined within a
relatively narrow range at greater depths, but show a greater scatter
at shallower depths. The scatter in computed accelerations seems to
be mostly associated to the rate of decrease in acceleration ampli-
tude.
• For Case 2, the amplitude of the achieved accelerations remains
fairly constant throughout the deposit during the whole time his-
tory. It is observed that recorded accelerations are somewhat higher
than the computed ones towards the top of the deposit. Very little
scatter is observed in the computed accelerations. The scatter of
computed acceleration time histories seems to be slightly larger
towards the top of the deposit.

Computed and recorded pore pressure ratios, ru, are shown in
Fig. 11. Excess pore pressure ratio is defined as the ratio between the

excess pore water pressure and the initial vertical effective overburden
stress; a value of r 1.0u = indicates full liquefaction. The following ob-
servations can be made regarding the pore pressure response:

• For Case 1, recorded pore pressures show a rapid increase, reaching
values of ru close to 1.0 after approximately at 1 s of shaking at the
upper depths of the soil deposit. At greater depths (z=4.6m), va-
lues of ru are somewhat lower than those at shallower depths.
Computed pore pressure ratios reach values of 1.0 throughout most
of the depth of the deposit (approximately 2.0–5.0m depth) after
t=8 s (see Fig. 12). The rates of pore pressure build up, however,
varies significantly for the different numerical simulations. Fig. 12a
shows a wide range of computed ru values, particularly at t=5 s,
throughout the deposit.
• For Case 2, recorded and computed pore pressures increase gradu-
ally starting at the initiation of shaking, reaching maximum values
at the end shaking (at approximately t=5 s). In general, for both
recorded and computed pore pressure responses, values of ru are
somewhat larger at shallower depths. Maximum values of ru are well
below 1.0 at all depths. This is not surprising given the relatively
small amplitude of base acceleration. Computed pore pressure ratios
exhibit significant scatter, which increases with the duration of
shaking. Computed ru values vary within ranges of around 0.1 to
0.25 throughout the deposit.

The observed variability in the simulated acceleration response
seems relatively small, resulting in small discrepancies in the achieved
peaks of accelerations at shallower depths, mainly during the time
frame associated to the pore pressure buildup. The variability in the
rates of pore pressure build up, however, was found to be significant for
both tests. At t=5 s, for instance, pore pressure ratios from the nu-
merical simulations vary with a factor of about 2 at certain depths. It
should be kept in mind that, as mentioned earlier, such variability
stems from the calibration of a single triaxial test. If the parameter
estimation would have been performed using multiple triaxial tests, the
uncertainty in the estimated parameters would potentially have been
higher due to the test-to test variability, probably leading to greater
variability in the modeled response. It should also be noted that al-
though the centrifuge experimental response provides a useful re-
ference to assess the predictions of the numerical simulations, the nu-
merical procedure aims at simulating the prototype behavior, not the
physically modeled response. As other authors have mentioned [45],
unavoidable difficulties during the experimental setup lead to a varia-
bility in the modeled acceleration and pore pressure response.

6. Conclusions

In this paper, experimental data collected from one undrained cyclic
triaxial test performed on Ottawa sand were used to estimate the
probability density functions of the parameters defining a pressure-
dependent multi-yield constitutive model (PDMY02) employing a
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Fig. 9. Laminar container and configuration of the instrumentation used for the centrifuge test El-Sekelly [73].
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Bayesian approach. Six model parameters, including the friction angle
( ), shear modulus at small strain (Gmax ), phase transformation angle
( PT), Poisson ratio ( ), and material constants related to contractive
and dilative behavior of the soil (c1 and d1, respectively), and one
parameter related to the prediction error ( e) were estimated using
normalized vertical strain ( v) and pore water pressure (u) as measured

quantities. Posterior distributions of the model parameters allowed
obtaining the marginal distribution of each estimated parameter and
point (mean and maximum a posterior) and uncertainty (standard de-
viation and coefficient of variation) estimates. Correlation between
different model parameters was observed, and the relationships (posi-
tive and negative correlations) were explained by the physical meaning

Fig. 10. Acceleration time histories for the experimental centrifuge test and numerical simulations. Depth z=0m corresponds to the surface of the experimental
deposit (z is measured in prototype units).
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Fig. 11. Pore pressure ratio time histories for the experimental centrifuge test and numerical simulations. Depth z=0m corresponds to the surface of the ex-
perimental deposit (z is measured in prototype units).

(a) Case 1 
 

(b) Case 2 

Fig. 12. Profiles of pore pressure ratio along depth for the experimental centrifuge test and numerical simulations at t=5.0 s, and t=8.0 s (for Case 1), and at
t=3.5 s, and t=5.0 s (for Case 2).
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of the constitutive model employed. Posterior distributions obtained
from the Bayesian approach were used to explore the effects of the
uncertainty in the estimated parameters on the predictive capabilities
of a finite element (FE) model in simulating the dynamic response of a
centrifuge soil model representing a 6m depth saturated sand deposit.
To this end, samples from the posterior distributions of the constitutive
model parameters estimated using the cyclic triaxial tests were drawn,
and the propagation of uncertainty in the numerically simulated ac-
celeration and pore pressure responses was assessed and compared to
the response of the centrifuge experiment. In general, a good agreement
was observed between numerical simulations and the experimental
response. Variability in the simulated acceleration response associated
to the uncertainty in the model parameters estimation was relatively
small, while variability in the rates of pore pressure build up was
somewhat significant. It should be noted that the same Bayesian ap-
proach could be carried out in the evaluation of uncertainties using
different material models.

The assessment of the credibility and capabilities of current com-
putational tools is an unresolved challenge within the geotechnical
community; in this context, this work offers a tool for the objective
assessment of the capabilities and limitations that a certain material
model has, given a set of data for calibration. The presented Bayesian
inference framework allows for the proper quantification of uncertainty
stemming from the calibration of the parameters of a given material
model using laboratory data. Furthermore, it is shown that based on
this quantified uncertainty, it is possible to quantify the uncertainty of
the modeled dynamic response of a soil deposit resulting from the use of
the Bayesian calibration procedure. Within the broader purpose of as-
sessing predictive capabilities in liquefaction related problems, this
work should complement ongoing and future efforts aimed towards the
quantification of other sources of uncertainty such as the spatial
variability of material properties or the repeatability of physical ex-
perimentation. A deeper understanding of the expected levels of un-
certainty associated to different possible sources will result in more
confidence in the available numerical tools and in a better judgement of
modeled predictions of soil deposit responses.
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