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A B S T R A C T   

In this paper, we employ a Bayesian approach to estimate the parameters of a high cycle accumulation model for 
sands using experimental data. Global sensitivity analysis and Markov-Chain Monte Carlo simulation are con-
ducted for each of the twenty-four available experimental drained triaxial test results, considering the effect of 
estimating soil parameters at each strain-cycle under several loading conditions. Probability distributions 
inferred from each data source are then combined to obtain a single distribution for model parameters. Model 
calibration is then validated against new observations. The accumulated strain model is calibrated through 
explicit computation of strain at each cycle and the strain dependence of model parameters is included through 
the cyclic variation of the model constants.   

1. Introduction 

Adoption of reliability and risk analyses in geotechnical engineering 
requires the estimation of input uncertainties (Christian, 2004; Whit-
man, 1984). In problems solved with numerical simulations where the 
geomaterial behavior is captured by constitutive models, uncertainties 
are introduced in the estimation of the model parameters (e.g., Zhou 
et al., 2021 and examples therein) as well as in the assumptions of the 
chosen constitutive model. The uncertainty of material parameters can 
affect the prediction of the performance of embankments (Otake et al., 
2021), shallow foundations (Suchomel and Mašín, 2011), tunnels (Miro 
et al., 2015), excavations (Jin et al., 2020), and slopes (Aladejare & 
Wang, 2018). For instance, the assessment of uncertainty in model pa-
rameters has been studied in the literature for soft soils (Zhou et al., 
2018), sands and silts (Jin et al., 2019), and liquefiable sands (Mercado 
et al., 2019). As a result, the parameters and their probability density 
functions are estimated to obtain probabilistic model characterizations 
that consider these sources of uncertainty and how they propagate to 
model predictions, with the goal of achieving a more realistic numerical 
representation of actual phenomena. 

High cycle accumulation (HCA) models have been developed to 
predict the long-term response of boundary value problems that involve 
several low magnitude load or strain cycles (more than ~ 105 cycles) at a 
cost-effective computational time. Compared to constitutive models that 
estimate the residual deformation during cyclic loading by implicitly 
defining the stress-strain material behavior (Corti et al., 2016; Liu et al., 

2019), HCA models explicitly calculate the accumulated shear and 
volumetric strains as a function of the number of load cycles, the state of 
stress, and state parameters, such as the current void ratio, among others 
(Suiker and Borst, 2003; Niemunis et al., 2005; Pasten et al., 2013; 
Francoise et al., 2006). Some of these models require the verification 
and update of model parameters at certain load cycles, termed control 
cycles, using additional constitutive models (Staubach et al., 2021). The 
use of these constitutive models in geotechnical applications allow the 
estimation of compatible displacement and stress fields (Staubach et al., 
2021; Chong & Pasten, 2018; Machaček et al., 2018). One example of 
such geotechnical applications is the modelling and prediction of the 
accumulation of deformation (especially tilt) in offshore wind turbines 
founded on monopiles (Houlsby, 2016). HCA models have been 
formulated and successfully applied recently towards this problem 
(Staubach et al., 2021; Cuéllar et al., 2014; Jostad et al., 2020; Liu et al., 
2021), lending credibility to the use of direct nonlinear numerical 
simulation for high-cyclic response of geotechnical systems. Neverthe-
less, because these applications target high number of cycles, the 
response measures of interest are very sensitive to accumulation of er-
rors which, among other obvious sources such as numerical integration 
issues, may come from uncertainty in the constitutive input parameters 
themselves calibrated from laboratory tests. Therefore, the study of the 
uncertainty propagation from lab tests into inferred constitutive pa-
rameters used in these problems is of great relevance to understand the 
uncertainty in the system response, which requires a probabilistic 
characterization of the input constitutive parameters. 
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In this manuscript, we adopt a Bayesian inference-based methodol-
ogy to calibrate the HCA model proposed by (Niemunis et al., 2005) 
using available drained cyclic triaxial test results (Wichtmann, 2005). A 
similar calibration approach was developed for hysteretic reinforcing 
steel one-dimensional constitutive stress–strain relationships using 
experimental cyclic tests conducted on reinforcing steel coupons (Birrell 
et al., 2021). First, the prior distributions are estimated with global 
sensitivity analysis (GSA) in the form of Sobol’s indices. Then, the 
posterior parameter distributions for N-independent and N-dependent 
cases are estimated with Markov Chain Monte Carlo (MCMC). Analyses 
are performed to evaluate the use of N-independent and N-dependent 
approaches. The probabilistic calibration framework for the HCA model 
presented herein uses all the tests results simultaneously, contrary to 
sequentially as presented by the model authors (Wichtmann et al., 
2010), to estimate the model parameters. 

2. Experimental data 

The experimental data used for model calibration in this work come 
from twenty-four cyclic triaxial tests on a coarse sand, generated by 
Wichtmann (Wichtmann, 2005) and later published by Wichtmann et. al 
(Wichtmann et al., 2009) and also studied by Pastén et. al. (Pasten et al., 
2013). The data consist of accumulated strain measured at 15 different 
number of stress cycles, control cycles N = 2, 5, 10, 20, 50, 100, 200, 
500, 1000, 2000, 5000, 10000, 20000, 50000 and 100000. The tested 
material corresponds to a coarse sand with mean grain size d50 of 0.55, 
uniformity coefficient Cu of 1.8, curvature coefficient Cc of 1.2, loosest 
(emax) and densest (emin) void ratios of 0.874 and 0.577, respectively, 
and a critical friction angle φc of 31.2. 

Four series of six tests each were originally designed by Wichtmann 
(Wichtmann, 2005) to calibrate the constants of the HCA model. The 
first series considered variations in the shear stress amplitude qampl, 
while other test conditions were kept constant. The second series 
considered different initial densities, reflected by different initial void 
ratios e0. The third series considered variations in stress obliquity η, 
defined as the ratio of the shear stress q=(σv – σh) and the mean effective 
stress p=(σv + 2σh)/3. Lastly, the fourth series included different mean 
pressure values pav, which implied different stress amplitudes to main-
tain the ratio ξ = qampl/pav constant at 0.3 and ηav = 0.75. 

Test conditions of each test are summarized in Table 1. As discussed 
in Section 3, a constant value for the strain amplitude and void ratio is 
considered to obtain a fully explicit model response. 

Originally, values of e0 of the test series were reported in (Wicht-
mann, 2005) as ranges except for test IDs 7-12, in which e0 was the 
controlled test variable. However, preliminary simulations for this work 
showed that the model response was highly sensitive to changes in e0. A 
single value was determined for each test by graphically matching the 
response using e0 values within the originally reported range to those 
reported in (Wichtmann, 2005). This process was followed for all tests 
except IDs 7-12. Strain amplitudes εampl were not available at every 
control cycle, as reported by (Wichtmann, 2005) and (Pasten et al., 
2013). Rather, the mean observed cycle strain amplitude over all control 
cycles in each test was considered. 

3. Soil model description 

The high-cycle accumulation model (HCA) studied in this work was 
published by Niemunis et. al. (Niemunis et al., 2005) and presented in 
detail by Wichtmann (Wichtmann, 2005). In the latter, the model was 
originally developed in an implicit-explicit simulation scheme consist-
ing of implicit control cycles (N) to verify the void ratio and strain levels 
and explicit calculation of accumulated strain between them. This 
approach allowed the model to generate accurate predictions for 
observed test data. The role of the control cycles was to update the 
values of void ratio eN and strain amplitude εampl(N), which in turn 
updated the HCA model between control cycles. Additionally, HCA 
model parameters were initially calibrated one-at-a-time at each control 
cycle, resulting in a set of N-dependent values in an implicit-explicit 
scheme. At each control cycle, an implicit model needed to be 
executed for that reason (e.g., the hypoplastic model extended by 
intergranular strain developed by Niemunis (Niemunis, 2003) was 
considered in (Wichtmann, 2005)). An explicit-only scheme was later 
adopted for simulation, to avoid the computational cost due to the 
number of strain increments and the need to execute the full finite 
element (FE) model in each cycle of implicit models. In this scheme, 
Wichtmann (Wichtmann, 2005) considered constant mean values of 
void ratio ēN and strain amplitude ε ampl for simulation. Then, N-inde-
pendent HCA model parameters were calibrated in a one-at-a-time basis 
and proposed for simulation. 

The diagram in Fig. 1 illustrates the comparison between calibration 
approaches adopted by (Wichtmann, 2005) and by this work. It can be 
noted that the first stage of simulation in both studies was to determine 
the initial conditions and obtain the strain at the first cycle, through the 
implicit model. The first approach in (Wichtmann, 2005) then updated 
eN and εampl in the implicit-explicit scheme and the model was calibrated 
at each N, thus involving N-variable soil conditions and HCA model 
parameters. In the second approach, soil conditions and HCA parameters 
were not updated at each N, instead the constant (average) values ̄eN and 
ε ampl were obtained from observed data and used for explicit-only 
simulation. This scheme resulted in a convenient set of constant HCA 
model parameters, albeit at the cost of losing model accuracy according 
to prediction errors reported by (Wichtmann, 2005). 

In this work, as shown in Fig. 1b, after determining the initial soil 
conditions, these were kept constant in an explicit-only scheme, to assess 
the viability of estimating sets of HCA model parameters simulta-
neously, rather than in a one-at-a-time basis. As accumulated strain 
predictions obtained from the former scheme were unsatisfactory, ac-
cording to the discussion in Section 5.2.1, the N-dependent parameter 
estimation was carried out, achieving accurate strain predictions at each 
N. Both approaches were studied in a Bayesian framework to obtain 
probability density functions (PDF) for HCA model parameters instead 
of deterministic parameter values. Following the estimation of N- 
dependent parameter PDFs, they were combined through their confla-
tion (Hill, 2011), which is defined in detail in Section 5.1, to obtain an N- 
independent, N-weighted, set of PDFs for model simulation. The strain 

Table 1 
Summary of experimental data.  

Series Test ID η pav (kPa) e0 qampl (kPa) εampl (10− 4)  

1 0.75 200 0.693 22 1.019  
2 0.75 200 0.697 42 2.002 

qampl 3 0.75 200 0.696 51 2.434  
4 0.75 200 0.686 60 2.890  
5 0.75 200 0.685 70 3.381  
6 0.75 200 0.685 80 3.969  

7 0.75 200 0.594 60 2.245  
8 0.75 200 0.619 60 2.424 

e0 9 0.75 200 0.674 60 3.058  
10 0.75 200 0.715 60 2.893  
11 0.75 200 0.729 60 3.526  
12 0.75 200 0.803 60 2.956  

13 0.25 200 0.705 60 2.956  
14 0.375 200 0.668 60 3.247 

η 15 0.5 200 0.683 60 3.225  
16 0.75 200 0.673 60 2.843  
17 1.00 200 0.684 60 2.708  
18 1.313 200 0.688 60 2.438  

19 0.75 50 0.677 15 2.087  
20 0.75 100 0.684 30 2.298 

pav 21 0.75 150 0.674 45 2.526  
22 0.75 200 0.672 60 3.011  
23 0.75 250 0.685 75 2.847  
24 0.75 300 0.66 90 3.103  
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predictions were assessed in Section 5.3. The combined PDF is then 
validated in Section 5.4 against experimental data not used in 
calibration. 

3.1. Model formulation 

The HCA model is constructed by functions that describe different 
aspects of the soil behavior. In the model expression, shown in eq. (1), 
the accumulated strain vector ε̇acc is computed as the product between 
functions fampl, fe, fp, fY, ḟN, and fπ and strain direction m obtained from a 
cyclic flow rule. The function describing strain polarization fπ was 
considered as 1 in this study. 

ε̇acc = ε̇accm = famplfefpfY ˙fN fπm (1) 

Strain accumulation rate ε̇acc in eq. (1) is determined by the product 
of the HCA model functions, each of which is defined by a feature of the 
soil and the state of stress. Table 2 summarizes the formulation of each 
function implemented in this work, along with its respective HCA 
parameter for sand No. 3. 

The functions in Table 2 depend on soil properties and test condi-
tions. The first function fampl depends on the cyclic strain amplitude εampl 
and its associated constant Campl, which was originally a constant value 
equal to 2 (Wichtmann, 2005). In a later work, Wichtmann et. al 
(Wichtmann et al., 2015) showed that including the parameter Campl was 
necessary. The reference strain amplitude εref

ampl is used to normalize 
values of fampl. The function fN depends on the parameters CN1,CN2,CN3, 
and the number of loading cycles N. The third function, fp depends on 
mean pressure pav and the parameter Cp. A reference pressure pref of 100 

kPa is used to normalize the value of pav. Function fY is related to mean 
stress obliquity Yav and depends on the parameter Cy. Lastly, the func-
tion associated with the void ratio, fe, depends on the void ratio e, the 
parameter Ce and a reference void ratio eref . In an implicit-explicit 
simulation scheme, the value of e corresponds to the current void ratio 
e(N), while in an explicit-only scheme it is fixed to a constant value. In 
upcoming sections, the initial void ratio e0 is used as a constant value for 
e. The reference value eref corresponds to the loosest void ratio of the soil 
emax, which for sand No. 3 is 0.874. 

For all analyses in upcoming sections, the HCA model parameters 
were normalized such that they all had the same order of magnitude. 
Note that fN was implemented rather than the differential version ḟN. 

Fig. 1. Diagram comparing the high-cycle accumulation model and methodology defined by (a) Wichtmann et al. (2005) and (b) this work.  

Table 2 
HCA model functions implemented and reference values for sand No. 3. 
(Wichtmann et al., 2009).  

Function Parameters 

fampl =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎝
εampl

εref
ampl

⎞

⎠

Campl

, εampl ≤ 10− 3

100, εampl > 10− 3 

εref
ampl = 10− 4 

Campl 

fN = CN1[ln(1 + CN2N)+CN3N ]ḟN =
CN1CN2

1 + CN2N
+ CN1CN3 

CN1,CN2,CN3 

fp = exp
(
− Cp

(pav

pref
− 1

)) pref = 100KPa 
Cp 

fY = exp
(
CyYav

) CY 

fe =
(Ce − e)2

1 + e
1 + eref

(
Ce − eref

)2 

eref = 0.874 
Ce  
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4. Global sensitivity analysis 

4.1. Sobol’s indices 

As a first step in the probabilistic characterization of the HCA model, 
global sensitivity analysis (GSA) was performed by computation of 
Sobol’s indices (Sobol, 2001) for model parameters. Global methods 
assess the relationship between variance in parameter values and vari-
ance in model response, assessing the influence that each parameter has 
in model uncertainty. Sobol’s first and total order indices quantify this 
effect regarding marginal and total variance induced by each parameter, 
respectively. Total index values are higher than first order, as they 
include all groups of parameters which contain the one in question, thus 
capturing uncertainty induced in the response by model parameter 
interactions. 

Through Sobol’s indices, a set of parameter PDFs is assessed to define 
prior PDFs for model calibration. In this context, an iterative process 
that considered different distribution types and parameters helped to 
explore the range of responses obtained by sampling from prior PDFs, as 
well as select which parameters to estimate in Section 5. 

Sobol’s indices for a set of parameters p are estimated through 
simulation, by using Janon’s estimator (Janon et al., 2014), as the 
relationship between the variance of expected model response given p (i. 
e., Var

[
E
[
Y|Xp

] ]
) and model variance (i.e., Var[Y]), as shown in eq. (2). 

Sp =
Var

[
E
[
Y|Xp

] ]

Var[Y]
=

Cov[Y,Yp]

Var[Y]
(2) 

Which, by expansion of the terms results in the expression for 
Janon’s estimator in eq. (3). 

Tp
N =

1
Ns

∑Ns
i=1YiYp

i −
(

1
Ns

∑Ns
i=1

[
Yi+Yp

i
2

] )2

1
Ns

∑Ns
i=1

[
Yi

2+(Yp
i )

2

2

]

−
(

1
Ns

∑N
i=1

[
Yi+Yp

i
2

] )2
(3)  

where Ns is the number of samples to be drawn, Yi is the matrix con-
taining all model responses, Yp

i is the matrix containing model responses 
evaluated from the so-called shuffled parameter sample matrix Xp which 
is generated during the computation of Sobol’s indices. The detailed 
process to obtain each of the terms in eq. (3) can be found in (Saltelli 
et al., 2008). 

By letting p = i, with i being any of the model parameters, first order 
indices are obtained. On the other hand, by letting p = ~i, i.e., all pa-
rameters except i, total Sobol’s indices are obtained by eq. (4) as. 

ST
i = 1 − S∼ i (4) 

By computing S1
i and ST

i for each parameter, at each cycle number 
and for each of the test conditions available from experimental data, a 
history of global sensitivity of the model response to each parameter is 
established, which helps defining an adequate setup for model calibra-
tion in Section 5. The interpretation of Sobol’s indices is that higher 
values indicate a higher level of influence of p on the model response, 
whereas lower values of the indices indicate a lower influence. 

4.2. Sensitivity analysis results 

To understand the relationship between each of the model parame-
ters and its response, as well as the influence of the parameters at 
different cycle numbers and soil conditions, GSA was performed for each 

Fig. 2. Summary of Sobol’s indices.  

M. Birrell et al.                                                                                                                                                                                                                                  



Computers and Geotechnics 147 (2022) 104798

5

of the 24 datasets at each of the 15 cycle numbers for which experi-
mental data was available (N = 2, 5, 10, 20, 50, 100, 200, 500, 1000, 
2000, 5000, 10000, 20000, 50000, 100000). In the form of first and total 
order Sobol’s indices, GSA results are summarized in Fig. 2, where each 
group of 15 bars correspond to the N-dependent indices of the corre-
sponding test ID. 

Parameter distributions summarized in Table 3 were used to estimate 
Sobol’s indices through simulation, considering Ns = 5000 samples. A 
total of Ns×(k + 2) model evaluations were required for estimation of 
first and total order indices, with k = 7 parameters, adding up to 45000 
evaluations for each analysis. Parameter PDFs were selected iteratively 
such that the range of responses obtained from sampling covered the 
range of observed responses in all tests. 

Sobol’s indices showed significant variability in parameter influence 
due to initial test conditions. Moreover, parameters Ce, Cy, and Cp 
showed a direct change of influence within the test series specifically 
designed to study them. Ce decreased in influence as initial void ratio e0 
increased in tests 7 to 12. Conversely, Cy gained influence as η increased 
in tests 13 to 18, while Cp gained influence as pav increased in tests 19 to 
24. The influence of Campl appeared to be proportional to the average 
strain amplitude in a given test, showed by the increase in the indices for 
tests 1 to 6 and 7 to 12 with the increase of εampl. 

The level of interaction among parameters, captured by the differ-
ence between first and total indices, appeared to be more prominent in 
those tests in which a given parameter had the largest influence. For 
example, Cy showed considerably larger difference in the indices for test 
18, where it was most influential, than on test 16, where the influence of 
Cy was less notorious. This observation applied analogously to other 
parameters and could be explained by the highly non-linear model 
formulation. For example, in tests 6 to 12 -where e0 was the controlling 
condition- the function associated with the void ratio, fe, containing the 
difference between Ce and e0 (in the explicit-only approach) could 
contribute a greater portion of the response compared to the other 
functions, thus producing a greater sensitivity to Ce when all functions 
were multiplied to obtain the response, as well as a greater sensitivity to 
the product between fe and other functions whose values remained 
constant. 

Secondly, parameter influence within each of the 24 tests was also 
investigated. While parameters related to initial test conditions did not 
show a considerable change in influence across cycles, those parameters 
related to cycle number, i.e., CN1, CN2, and CN3, could presumably 
impact the response depending on the number of cycles. Regarding CN1, 
it serves as a constant that multiples the function fN in model formula-
tion, although not directly multiplied by N. Consequently, its influence 
remained almost constant within each test, and among test conditions, 
showing a considerable impact on model response throughout all tests 
due to fN being proportional to CN1. Parameter CN2, on the other hand, 
directly multiplied by N in model formulation, did show variability on 
its influence within each test, although not quite among tests. It highly 
impacted the model response in low cycles, while having an almost 
negligible effect on high-cycle responses. The influence of CN3 was the 
lowest among all parameters for the range of cycle numbers investi-
gated, although its indices increased towards higher cycles. The purpose 

of this parameter in the initial formulation was to account for high 
number of cycles (>105), and thus its influence on the range of the 
available experimental data was negligible. For this reason, the data did 
not contain enough information about CN3 for it to be considered in 
model calibration, and it was instead fixed to a constant value CN3 =

5×10-5, according to the recommendation in (Wichtmann, 2005). 

5. Bayesian parameter estimation and model calibration 

5.1. Bayesian estimation setup 

For model calibration, Bayesian parameter estimation is carried out 
in this section. Parameter posterior PDFs are obtained from Markov- 
Chain Monte Carlo (MCMC) simulation by sampling of parameter 
prior PDFs and likelihood of observed data conditioned to sampled pa-
rameters. Posteriors resulting from Bayesian estimation (BE) methods 
quantify the uncertainty in model response given parameter posteriors 
and model discrepancy definitions. With these distributions, an arbi-
trary number of predictions can be generated which propagate param-
eter uncertainty into model response. The implementation of Bayes’ rule 
for parameter estimation is further detailed in Appendix A, and thor-
ough reviews of Monte Carlo methods and their implementation are 
available in (Kroese et al., 2011) and (Wagner et al., 2022). 

In this section, BE is performed for cycle-dependent and independent 
parameter values, the results of which are discussed in Section 5.2. Prior 
PDFs are assigned as the same PDFs studied through GSA in Table 3, for 
all parameters except CN3, which is kept constant. Six model parameters 
are therefore estimated through MCMC, using an Adaptive Metropolis 
sampler (Haario et al., 2001) in a setup consisting of 4 chains of 50000 
steps each, of which the last 20000 are kept for posterior PDFs. The 
MCMC setup is summarized in Table 4. Chains are combined after 
assessing their convergence through the potential reduction factor 
MPRSF (Gelman & Rubin, 1992), yielding a single posterior sample of 
80000 points for each parameter. The multivariate effective sample size 
(mESS) (Vats et al., 2019) and precision estimator (εmESS) are then 
computed for each estimation as termination criteria for MCMC. Finally, 
1000 samples from the posterior are simulated to assess the uncertainty 
in model responses produced when sampling from the posterior. The 
model is also evaluated at the posterior mean to generate a point esti-
mate prediction and compute its relative root mean squared error 
RRMSE with respect to the experimental data, as defined in eq. (5). 

RRMSE(%) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

Np

∑
(yobs − ymod)

2
√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

Np

∑
yobs

2
√ × 100% (5)  

where yobs is the experimentally observed response, ymod is the point- 
estimate model response, and Np is the number of data points in each 
response. 

For the N-dependent case, posteriors obtained are combined through 
conflation of distributions (Hill, 2011) to obtain a single-value PDF for 
model simulation. The conflation of n distributions with a set of weights 
wi and probability density functions fi(x), with i = 1,⋯, n is determined 
by eq. (6). 

F(x) =
∏n

i=1 f wi/wmax
i (x)

∫∞
− ∞

∏n
i=1 f wi/wmax

i (t)dt
(6)  

where wmax is the maximum weight among PDFs. All weights wi are 

Table 3 
Distributions used for GSA.  

Model Parameter 
(Normalized units) 

Distribution Mean 
(μ) 

Standard deviation 
(σ) 

Ce (10− 1) Lognormal 4.5 1.5 
Cy Lognormal 2.5 0.5 
Cp (10− 1) Lognormal 5.0 3.0 
Campl Lognormal 2.0 0.5 
CN1 (10− 4) Lognormal 4.0 3.0 
CN2 (10− 1) Lognormal 5.0 2.0     

Lower Bound Upper Bound 
CN3 (10− 5) Uniform 3.0 10.0  

Table 4 
Setup of MCMC for parameter estimation.  

MCMC parameters 

Number of steps 50000 (4 chains) burn-in 60% 
Discrepancy σ  Constant 1% of εobs  
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normalized such that they sum up to 1. 

5.2. Parameter estimation results 

Initially, given the low effect of cycle-numbers on the influence of 
parameters, excluding CN2, it seemed appropriate to estimate a single 
distribution for each parameter in each test. This stage will be referred to 
herein as the N-independent estimation, reviewed in detail in Section 
5.2.1. As further discussed in that section, posteriors obtained from this 
approach did not generate accurate predictions overall. Moreover, they 
appeared to be heavily influenced by parameter priors, as opposed to by 
the observed data. This resulted in wide posteriors centered around the 
prior mean, which appeared to converge at MPRSF values lower than 
1.05 but provided little to no information about the target distributions. 
Despite reasonable point estimates, at RRMSE levels of 8.5% in test 12 to 
21% in test 19, the variance in model predictions generated by this 
approach was unrealistic. In a second estimation stage an N-dependent 
approach was used, which will be discussed in Section 5.2.2. 

Iteratively, different prior parameters, distribution types, and defi-
nitions of the model-data discrepancy σ, represented by the standard 
deviation of the data likelihood, were considered for the N-dependent 
approach. For σ, cases considered constant values in strain units and 
constant values proportional to the observed strain. To this end, ten 
cases of prior and σ combinations were executed. The selected case was 
the one summarized in Section 5.2.2, for which the N-independent 
approach was re-evaluated to establish a comparison between both 
approaches. Model predictions obtained by the N-dependent approach 
were significantly more accurate than the N-independent approach in 
both point estimates and posterior samples. As opposed to the previous 
approach, N-dependent priors clearly showed convergence among 
chains with all MPRSF values below 1.02, and no predictions with 
RRMSE over 7% for a 90% confidence interval (CI). With the intention of 
providing a single PDF for model simulation, the N-dependent approach 
is extended in Section 5.2.2 by combining all posteriors through PDF 
conflation according to eq. (6). 

5.2.1. Cycle-number independent analysis 
For the N-independent case, estimation results are summarized in 

Table 5 while the posterior of test 16 is plotted as an example in Fig. 3. In 
Table 5 μ and δ refer to mean and coefficient of variation (c.o.v.), 

respectively. In Fig. 3, histograms of posterior MCMC samples are shown 
in the diagonal and colored green. A lognormal distribution fit to those 
samples is shown in blue and the sample mean is plotted in a black 
vertical line. Outside the diagonal, bivariate posterior samples from 
MCMC are scattered (above the diagonal) and their contours are shown 
(below the diagonal) along with the linear correlation coefficient be-
tween each parameter pair. Motivated by practicality, a single value for 
each parameter was to be estimated from each test. In other words, 
although the original work by Wichtmann (Wichtmann, 2005) showed 
that N-dependent parameters produced the most accurate model pre-
dictions, N-independent parameters are desired in practice. Naturally, 
this approach would produce less accurate predictions. Nevertheless, an 
assessment of the variability in simulated model responses was neces-
sary to evaluate the need of considering N-dependent parameters. 

In this stage, 24 MCMC -with 15 observed data points each- esti-
mations were carried out with a single set of priors and MCMC setup. 
The priors used were the same as in Section 5.2.2 to compare the results 
of both approaches. For each test, model response was the complete 
accumulated-strain history produced by the sampled set of parameters. 
Given the change in sensitivity of the model response to some parame-
ters at different strain cycles, the N-independent estimation of these 
parameters was expected to yield predictions that fit those cycles at 
which sampled parameters had the largest influence better than others. 
However, results showed that N-independent posteriors did not clearly 
converge to target distributions. On the contrary, most proposed sam-
ples by the Adaptive Metropolis (AM) algorithm were rejected, causing 
posteriors to be similar to priors despite the high variance in obtained 
model responses. As a side-effect, computing times for each MCMC were 
in the order of 5 to 6 times the cost of MCMC in the N-dependent 
approach. 

Regarding parameter estimation, as shown in Table 5, posterior 
means of some parameters did not substantially change from prior PDF, 
with Ce resulting with a mean (μ) of about 4.5 and coefficient of varia-
tion, c.o.v. (δ), in the order of 33%. This pattern could also be observed 
for parameters Cy and Campl. Parameters Cp, CN1, and CN2, on the other 
hand, showed more variation among test IDs. Parameter Cp showed 
posteriors considerably narrower than its prior, with δ in the order of 
17% to 30% compared to δ = 60% in the prior. Parameter CN1 showed 
variability in posterior means across tests, with 0.42 in test 19 up to 5.0 
in test 4, while posterior δ did not substantially decrease in most cases 

Table 5 
Summary of MCMC for the N-independent estimation.   

Ce (10− 1) Cy Cp (10− 1) Campl CN1 (10− 4) CN2 (10− 1) RRMSE mESS εmESS MPRSF 
Test ID μ δ (%) μ δ (%) μ δ (%) μ δ (%) μ δ (%) μ δ (%) (%)  (%)  

1 4.49 33.0 2.52 20.1 2.44 24.5 1.99 24.5 4.69 68.6 2.18 40.2 14.51 2859 7.0% 1.029 
2 4.50 33.4 2.57 20.5 2.51 25.5 2.08 25.0 4.12 59.6 1.71 30.7 10.78 1884 8.6% 1.026 
3 4.44 33.1 2.54 19.8 2.54 25.7 2.06 23.5 4.50 62.3 1.14 26.6 11.92 1420 10.0% 1.041 
4 4.52 34.5 2.50 19.7 2.81 27.0 2.07 24.1 5.00 83.3 1.12 26.0 17.27 1574 9.5% 1.080 
5 4.43 32.9 2.55 19.4 2.88 26.1 2.03 23.1 4.10 59.7 1.28 26.2 12.24 1723 9.0% 1.033 
6 4.69 33.0 2.56 19.9 2.77 26.7 2.11 24.5 4.13 54.1 1.05 21.8 13.26 1270 10.5% 1.049 
7 4.58 32.3 2.48 20.2 4.59 16.9 1.96 25.3 3.50 66.1 4.03 39.6 15.00 3058 6.8% 1.013 
8 4.48 31.9 2.49 20.6 3.75 20.9 1.97 25.6 3.51 65.5 2.97 38.8 13.99 2739 7.2% 1.053 
9 4.50 32.2 2.53 19.7 2.91 24.7 2.07 23.5 4.04 59.7 1.98 31.7 12.83 1827 8.8% 1.082 
10 4.40 31.5 2.57 19.7 2.45 27.6 2.09 23.5 4.59 54.6 1.16 23.9 10.80 1662 9.2% 1.023 
11 4.52 32.1 2.65 19.3 2.33 30.0 2.16 22.4 4.94 59.5 0.57 18.6 11.92 873 12.7% 1.100 
12 4.50 33.3 2.58 19.7 1.95 31.9 2.31 21.1 5.53 48.5 0.34 16.9 8.51 907 12.5% 1.083 
13 4.47 32.2 2.50 19.9 2.41 28.0 2.15 24.0 4.56 61.7 1.32 30.0 12.15 1754 9.0% 1.039 
14 4.43 33.2 2.52 21.0 2.85 27.3 2.07 24.5 4.26 63.2 1.58 32.6 11.96 1814 8.8% 1.101 
15 4.52 35.9 2.53 20.1 2.78 26.8 2.09 22.9 4.64 62.1 1.42 31.2 13.71 1877 8.7% 1.065 
16 4.46 33.5 2.51 19.5 2.78 26.3 2.07 23.9 4.21 64.3 2.27 29.8 14.59 1733 9.0% 1.037 
17 4.45 32.0 2.51 19.3 2.78 26.2 2.05 22.5 4.23 58.5 1.23 23.7 14.66 1484 9.7% 1.037 
18 4.49 31.2 2.55 18.0 2.83 27.3 2.08 23.9 3.96 54.4 0.43 14.2 17.25 933 12.3% 1.678 
19 4.76 30.7 2.17 18.7 1.47 35.3 1.45 19.8 0.42 32.2 0.76 28.9 21.15 1005 11.8% 1.028 
20 4.79 31.1 2.24 18.3 4.97 57.5 1.50 20.5 0.69 27.9 0.68 27.9 17.87 1095 11.3% 1.013 
21 4.59 33.2 2.46 18.8 4.44 31.2 1.95 23.3 3.12 59.0 1.93 33.0 13.51 1905 8.6% 1.063 
22 4.51 34.6 2.52 20.1 2.82 25.9 2.04 23.4 3.92 57.0 2.47 30.8 13.00 1768 8.9% 1.038 
23 4.58 35.5 2.52 19.7 2.14 22.8 2.14 23.6 4.71 58.7 2.36 32.5 11.93 1754 9.0% 1.043 
24 4.45 32.8 2.55 20.3 1.83 20.7 2.15 24.6 4.76 59.6 2.61 32.4 14.49 1507 9.7% 1.032  
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from the prior δ of 75%. With respect to CN2, it could be observed in GSA 
results that its influence was most significant for low-cycle responses, 
with little information available for its value at high-cycles. The prior 
mean of 5, with a δ of 40% shifted to posterior means in the range of 0.34 
in test 12, to 4.03 in test 7. Posteriors did not differ considerably from 
the prior, with most tests showing a δ between 30% and 40%, and the 
minimum being 14.2% in test 18. A significant reduction in the vari-
ability of this parameter was not expected, due to its low influence on 
model response. Conversely, it was not expected to induce a great degree 
of variance in model response at high-cycle numbers. 

In general terms, point estimates corresponding to the model eval-
uated at the posterior mean generated predictions with RRMSE respect 
to experimental data in the order of 8.5 to 21%, similar to the accuracy 
achieved by the set of values originally proposed by Wichtmann 
(Wichtmann, 2005). However, the variance in simulated model re-
sponses was unrealistic in terms of strain, producing a range of responses 
with no application inpractice. Model predictions obtained from this 
approach were not included in this paper because of the large variability 
in the results and due to space limitations. 

The N-independent approach, in consequence, was not satisfactory 
even after reaching a certain degree of convergence according to the 
MPRSF value obtained. Moreover, out of the 80000 MCMC steps in each 
posterior, effective sample sizes were in the order of 873 in test 7, for 
which the highest precision was obtained at 6.8% for a 95% CI, to 3058 
in test 11 which showed a precision of 12.7% for the same CI. Following 
these results, the N-dependent approach was followed, as further dis-
cussed in Section 5.2.2. 

5.2.2. Cycle-number dependent analysis 
The N-dependent case considered the estimation of model parame-

ters for each of the 15 cycle numbers for which experimental data were 
available. At each cycle, accumulated strains of the 24 tests were used as 
data for calibration. In consequence, 15 MCMC estimations with 24 data 

points each were carried out, as opposed to the 24 MCMC estimations 
with 15 data points each in the N-independent case. MCMC setup was 
the same as the previous case, with 4 chains of 50000 steps of which the 
last 25000 steps were combined into a single 100000-sample posterior. 

Initially, a set of posteriors for each N was obtained, which was 
estimated considering all test IDs at each N. As opposed to the N-inde-
pendent approach, from which 24 sets of parameters were obtained − 1 
for each test− , results from the N-dependent estimation could be 
considered as a single N-dependent set of PDFs for model parameters, 
which covered all tests at once. The posterior PDFs obtained were 
summarized in Table 6. 

Parameter estimation in this case clearly showed convergence of 
MCMC chains, with no cases surpassing a MPRSF of 1.02. Effective 
sample sizes obtained were about 3 times those of the N-independent 
approach, with relative precisions ranging between 5 and 7% for a 95% 
CI. Point estimates obtained had variable accuracy, with decreasing 
RRMSE as N increased. For N < 50, in fact, errors were higher than those 
of the N-independent approach, ranging from 15 to 26% RRMSE. 
Moreover, for N > 50, point estimates achieved considerably more ac-
curate predictions, at RRMSE of 6 to 12%. Therefore, more uncertainty 
in model response was expected at low N-values than for high N-values 
from this approach. It could be argued that less information about model 
parameters was contained in experimental responses during early cy-
cles, which could be due to the small observed strains (<0.01%). In 
practice, extremely low strain values could be produced by several 
combinations of model parameters, which similarly to the N-indepen-
dent estimation, could result in mostly rejected samples by MCMC and 
thus posterior PDFs similar to their priors. 

With respect to parameter posteriors, it was observed that the mean 
value of Ce increased with respect to N. While for low cycles its mean was 
close to the prior’s 4.5; the mean at high cycles was about 5.3 to 5.4. 
However, considerably lower δ was obtained with increasing N, 11.7% 
at N = 2 and 1.1% at N = 100000. Posteriors narrowed considerably 

Fig. 3. Sample of parameter posteriors for the N-independent approach (Test ID 16 at N = 100000).  

M. Birrell et al.                                                                                                                                                                                                                                  



Computers and Geotechnics 147 (2022) 104798

8

from the prior δ of 33%, suggesting that the information in experimental 
data about this parameter was captured in MCMC. For other parameters, 
excluding CN2, the same outcome was obtained. Posterior means shifted 
from the prior’s, with δ decreasing as N increased. Parameter Cy showed 
little variability, ranging from 1.85 to 2.2 in posterior means, with δ 
decreasing from 12% to 4%, compared to the prior 20%. Parameter Cp 
resulted in more variable posterior means, which ranged from 2.6 to 5.2, 
and δ decreasing from 40% to 10% compared to prior’s 60%. Parameters 
Campl and CN1 followed decreasing and increasing mean trends, respec-
tively, with the former ranging between 2.15 and 1.7, and the latter 
increasing from 2.2 to 5.2 in high cycles. For both parameters, δ 
decreased considerably with N. While Campl showed δ ranging from 
16.4% to 6.4% compared to the prior 25%, CN1 resulted in δ that ranged 
from 45% to 13.1%, compared to the 75% in its prior. Parameter CN2, on 
the other hand, did not show clear convergence on its posteriors, even 

when mean values suggested an increasing trend with N. While posterior 
means ranged from 4.4 to 5.1, the values of δ in each N-step were similar 
to the prior’s, at a range of 35% to 40%. Given the low influence CN2 had 
in model response for N > 50, it was expected that little information 
would be available for this parameter in experimental data. Similarly, 
such variability in CN2, together with its influence in low strain cycles, 
could produce model predictions with more uncertainty at N < 50. 

In addition to marginal posteriors for each parameter, correlations 
between them were also investigated during MCMC. The sample pos-
terior shown in Fig. 4, corresponding to N = 100000, includes histo-
grams for the marginal posteriors of each parameter previously 
discussed in the diagonal (with the MCMC sample plotted as a green 
histogram, a lognormal fit in blue, and posterior mean in black). Outside 
the diagonal, scatter plots show bivariate posteriors for parameter pairs, 
from which the correlation matrix was obtained for each N. 

Table 6 
Summary of MCMC for the N-dependent estimation.   

Ce (10− 1) Cy Cp (10− 1) Campl CN1 (10− 4) CN2 (10− 1) RRMSE mESS εmESS MPRSF 

N μ δ (%) μ δ (%) μ δ (%) μ δ (%) μ δ (%) μ δ (%) (%)  (%)  

2 4.78 11.7 1.96 12.0 3.89 39.5 2.01 16.4 2.20 45.0 4.39 35.7 26.78 3835 6.1% 1.013 
5 4.83 8.5 1.90 10.2 3.67 36.0 2.14 13.2 1.98 40.6 4.51 38.0 21.83 3744 6.1% 1.016 
10 4.87 6.3 1.88 9.1 3.18 33.4 2.08 12.8 2.20 38.1 4.59 39.8 19.18 3351 6.5% 1.012 
20 5.00 4.3 1.96 7.8 2.97 32.7 1.97 12.3 2.44 31.5 4.84 39.4 15.74 4034 5.9% 1.014 
50 5.09 3.3 2.03 6.7 2.65 31.6 1.87 11.9 2.75 28.8 4.97 40.9 13.71 3735 6.1% 1.014 
100 5.10 2.9 2.05 5.9 2.59 29.4 1.89 10.8 2.79 26.5 4.93 39.9 11.66 4148 5.8% 1.019 
200 5.19 2.5 2.14 5.3 2.61 28.6 1.82 10.6 3.00 24.5 5.00 39.6 9.83 3539 6.3% 1.012 
500 5.24 2.2 2.20 4.8 2.48 27.4 1.80 10.5 2.98 23.7 4.98 40.8 8.42 3984 5.9% 1.011 
1000 5.26 2.1 2.21 4.7 2.61 26.3 1.83 9.8 2.92 22.6 4.98 40.0 8.39 4805 5.4% 1.007 
2000 5.30 1.8 2.21 4.4 2.80 24.4 1.82 9.3 3.03 20.8 4.91 37.9 6.95 5201 5.2% 1.007 
5000 5.34 1.7 2.16 4.3 3.26 21.1 1.84 8.7 3.24 19.3 4.97 41.3 7.17 3186 6.6% 1.014 
10000 5.37 1.6 2.11 4.2 3.70 18.1 1.84 8.0 3.52 18.1 5.06 40.1 6.64 4113 5.9% 1.011 
20000 5.37 1.5 2.06 4.0 4.24 15.4 1.83 8.0 3.88 17.9 5.00 40.2 6.27 5685 5.0% 1.005 
50000 5.39 1.3 1.96 4.0 4.96 11.9 1.79 7.0 4.59 15.0 5.10 40.8 6.14 2814 7.1% 1.006 
100000 5.40 1.1 1.85 3.8 5.24 10.0 1.71 6.4 5.21 13.1 5.06 39.1 7.33 3753 6.1% 1.010  

Fig. 4. Sample of parameter posteriors for the N-dependent approach (all tests at N = 100000).  
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Posteriors were sampled at each N, considering parameter correla-
tions, to produce N-dependent predictions for each test ID which were 
summarized in Fig. 5. Higher accuracy was achieved by these pre-
dictions than the N-independent approach, as well as relatively low 
variability in model response. As expected, the uncertainty was highest 
in lower-strain test IDs such as tests 1 and 7, for which the RRMSE of 
posterior-mean samples were 18% and 27%, respectively. For most tests, 
posterior samples produced mean errors under 10%. In general, it was 
observed that N-dependent parameters allowed to reproduce observed 
strain in mid-strain cycles, whereas a single value for each parameter 
would produce a nearly bi-linear response, as was the case during the 
analysis in Section 5.3. Therefore, N-dependent PDFs for model pa-
rameters allowed accurate predictions in an explicit-only scheme, which 
could drastically reduce the computational cost of model simulation 
compared to the implicit/explicit simulation scheme. 

Subsequent analysis focused in obtaining a more practical, single- 
value PDF that could adequately represent experimental data, as it 
was the initial purpose of the N-independent approach. For this purpose, 
marginal posteriors as well as their correlation matrices from the 15 
estimations were combined in a manner that could reflect the amount of 
information that could be extracted at each N. 

The lognormal fits to marginal posteriors were plotted for each 
parameter in Fig. 6, along with the prior distribution for reference. With 
the purpose of combining the information from all posteriors, cycle 
numbers were divided in three groups: N = {2, 5, 10, 20, 50, 100, 200}, 
N= {500, 1000, 2000, 5000}, and N= {10000, 20000, 50000, 100000}. 
These groups were colored grey, blue and green, respectively, in Fig. 6 
and Fig. 7. N-dependent correlation matrices for each posterior are 
shown in Fig. 7. It was observed that correlations among parameters 
remained stable despite the changes in marginal distributions. There-
fore, a single correlation matrix, shown in Table 7, was defined for 
sampling of the single-value PDF, as the average of all 15 cycles. Pre-
viously, samples shown in Fig. 5 had been drawn from the full N- 
dependent posterior, including the respective correlation matrices. 

Discussion in Section 5.3 includes the impact of using an average cor-
relation matrix for sampling of the single combined distribution. 

To obtain a single set of means and c.o.v. for each parameter, pos-
terior lognormal fits were combined by conflation of distributions. This 
method establishes a single PDF which is more influenced by narrow 
posteriors and weighted by a certain of values defined by hand. In the 
context of this work, as high-cycle posteriors were found to be narrower 
than low-cycle ones, high-cycle posteriors had more influence in 
conflated PDF than low-cycle posteriors. Additionally, weights wi for 
each posterior were defined such that for N up to 500 w1 = 0.4, for N 
between 500 and 5000 w2 = 0.6, and for N between 10000 and 100000 
w3 = 1. The weights were normalized such that they sum up to the unity. 
Different weights represent the credibility of each experiment, which 
was the original meaning discussed in (Hill, 2011). Herein, wi were 
selected to reflect a possible level of engineering interest in each group 
of cycles for the conflation. Iteratively changing wi produced the 
conflated PDF to lean towards one group or another. The resulting 
lognormal PDF was based on high-cycle posteriors more heavily than on 
low-cycle ones, while still including the information obtained from all 
MCMC. 

A single-valued PDF was obtained for sampling and summarized in 
Table 7 along the correlation matrix obtained from the N-dependent 
estimation. Distribution means were similar to those proposed originally 
by Wichtmann (Wichtmann, 2005), while a measure of parameter un-
certainty and correlations are also provided by this study. 

5.3. Predicted responses 

The HCA model was evaluated for each of the 24 tests through the 
single PDF summarized in Table 7, by drawing 1000 samples, from each 
parameter independently and from the correlated PDF as well. In gen-
eral, the predictions obtained from the N-dependent approach showed 
higher accuracy than those for the N-independent approach, although 
the PDF generated by a higher weighting of high cycle numbers meant 

Fig. 5. Predictions obtained by drawing samples from the posterior obtained from the N-dependent approach.  
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Fig. 6. Summary of parameter posteriors for the N-dependent case.  

Fig. 7. Correlation matrices from each N-dependent estimation.  
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that for tests with low accumulated strain, such as tests 1 and 24, pre-
dictions were not as accurate. In addition, the variability in model 
response was considerably less than that of the N-dependent approach. 
On the other hand, predictions from the conflated PDF achieved less 
accurate predictions than the N-dependent approach. There was, in 
consequence, a trade-off between practicality and model accuracy. 
However, the single PDF in both sampling cases generated predictions 
with low variability that approximated observed responses with point 
estimate errors in the range of 3.5% to 15% for 21 of the tests, and three 
tests with mean errors of 21 to 25%. Samples generated from uncorre-
lated and correlated sampling of parameters in Table 7 are shown in 
Fig. 8 and Fig. 9. Clearly, point estimate errors were the same in both 
cases as posterior means were the same. However, although the variance 
in uncorrelated sampling was considerably higher than that of corre-
lated sampling, it allowed to capture a level of uncertainty that might be 
of interest in later probabilistic studies including this PDF. On the con-
trary, predictions obtained by correlated sampling of the model had 

little variability which meant that for those points for which predictions 
were not accurate at a point-estimate level, parameter distributions 
could not capture the observed response. Such was the case in test 16, for 
example, where the whole response was underestimated by the corre-
lated PDF, whereas uncorrelated sampling came closer to covering the 
whole response in the 50% and 90% CI. 

Additional N-dependent calibration scenarios were carried out, 
considering subsets of six and twelve tests each, and replicating the 
setup described in Section 5.1. These scenarios were designed to eval-
uate the effects of the number and type of datasets (i.e., number of tests 
and type of series) on the parameter estimation results and model pre-
diction capabilities. The cases considered were selected based on subsets 
of one and two complete test series, as well as subsets taken randomly 
from the complete sample (i.e., including tests from all series). 
Regardless of including six or twelve test IDs, the inferred posteriors 
from subsets that included at least one test per series generated more 
accurate predictions on the whole sample than those calibrated against 
only one or two test series. Moreover, the information contained in the 
experimental data about sensitive parameters was the most decisive 
factor in the general predictive capacity of the calibrated model. This 
suggests that efforts in collecting experimental data should focus on 
gaining as much information as possible about sensitive model 
parameters. 

5.4. Model validation 

The conflated PDF obtained in Section 5.2.2 is used herein for sam-
pling of the HCA model for sands. Model predictions were generated for 
all tests used in calibration by uncorrelated (see Fig. 10a) and correlated 
(see Fig. 10b) sampling of parameters, and results from both approaches 
were evaluated in Section 5.3. This section discusses predictions ob-
tained by 1000 samples of the proposed single PDF, also from inde-
pendent and correlated sampling, for five sets of data from tests not 
considered for model calibration. Experimental data from these tests is 

Table 7 
Parameter distributions obtained from posterior conflation.   

Ce 

[10− 1] 
Cy Cp 

[10− 1] 
Campl CN1 

[10− 4] 
CN2 

[10− 1] 

Mean (μ) 5.3 2.0 4.1 1.8 3.7 4.1 
Std. dev. 

(σ) 
0.030 0.031 0.242 0.052 0.234 0.520 

c.o.v. (δ) 0.6% 1.5% 5.9% 2.9% 6.4% 12.8%   

Parameter correlation matrix  

Ce Cy Cp Campl CN1 CN2 

Ce 1.0 0.00 − 0.03 − 0.14 0.41 0.03 
Cy 0.00 1.0 0.17 0.33 − 0.41 − 0.03 
Cp − 0.03 0.17 1.0 0.36 − 0.03 0.00 
Campl − 0.14 0.33 0.36 1.0 − 0.78 − 0.05 
CN1 0.41 − 0.41 − 0.03 − 0.78 1.0 − 0.26 
CN2 0.03 − 0.03 0.00 − 0.05 − 0.26 1.0  

Fig. 8. Model predictions obtained from uncorrelated sampling of the conflated PDF from N-dependent estimation.  
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summarized in Table 8. 
Responses generated in this stage were completely predictive as the 

proposed PDF was not informed by the data in these six tests. Point 
estimate errors were the same in both cases, analogously to responses in 
Section 5.3. The six tests resulted in RRMSE for point estimates between 
5.2% and 14%. Therefore, the proposed PDF produced reasonably ac-
curate mean-predictions for data at strain levels between 0.25% and 
4.5%, effectively covering the range of strains for which the model was 
originally calibrated. 

Correlation between parameters decreased response uncertainty 
considerably, although in some cases this meant that all predictions had 
a higher approximation error. The level of accuracy achieved by 

Fig. 9. Model predictions obtained from correlated sampling of the conflated PDF from N-dependent estimation.  

Fig. 10. Model predictions for validation datasets. (a) Uncorrelated sampling. (b) Correlated sampling.  

Table 8 
Experimental data considered for model validation.  

Test ID η pav (KPa) e0 qampl (KPa) εampl (10− 4) 

1 1.125 200 0.7 60 2.629 
2 1.25 200 0.69 60 2.539 
3 0.75 200 0.64 60 2.929 
4 0.75 200 0.605 60 2.647 
5 0.75 200 0.698 31 1.451 
6 0.75 200 0.698 12 0.504  
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uncorrelated sampling suggests that it might capture the model behavior 
well enough to be used in simulation. On one hand, the error of the 
single prediction generated by the mean of the parameter PDF does not 
depend on correlations. On the other hand, the expected value of model 
response was similar in uncorrelated and correlated sampling. Because 
of this, it might be more practical to sample from the proposed PDF 
without considering parameter correlations. Moreover, correlation 
matrices obtained from each single posterior in Section 5.2.2 might 
unreasonably reduce the model uncertainty observed in calibration, as 
the conflation of posteriors produced already narrow PDFs which did 
not necessarily include the tails of any individual posterior PDFs. In this 
sense, uncorrelated sampling of the single PDF is advised to reflect the 
parameter variance observed in calibration. At the same time, if test 
conditions e0, pav, η, qampl and εampl can be confidently determined, 
correlated N-dependent sampling of the parameters will produce the 
best results and is therefore advised. 

6. Conclusions 

This paper developed a probabilistic characterization of the high 
cycle accumulation (HCA) model proposed by Niemunis et al. (Niemunis 
et al., 2005). Experimental data from the work by Wichtmann (Wicht-
mann, 2005) was used to calibrate model parameters through Markov- 
Chain Monte Carlo (MCMC) and evaluate different sampling strategies 
for model simulation. All computations made in this work considered an 
explicit-only approach to the model, because of which an implicit model 
was only considered for the first strain cycle. The goal of this approach 
was to avoid the cost of an implicit-explicit approach. 

In a first stage, global sensitivity analysis (GSA) in the form of Sobol’s 
indices was conducted to define prior distributions for calibration. An-
alyses were performed over the 15 cycle data points available and for 
each of the 24 test IDs, which revealed N-dependence in the influence of 
one parameter and varying influence of HCA parameters depending on 
test conditions. 

Bayesian parameter estimation was then carried out with MCMC for 
N-independent and N-dependent cases and the posterior distributions 
obtained from each case were compared. Upon discarding the results 
obtained from N-independent estimations, subsequent work aimed to 
achieve a set N-independent parameters that retained prediction accu-
racy and a level of uncertainty that reflected that of MCMC estimations. 

To this end, parameter posteriors from each cycle number were 
combined through the conflation of their lognormal fits and a correla-
tion matrix was defined for sampling. The predictions generated by 
uncorrelated and correlated sampling of this PDF were compared in 
terms of point-estimate predictions with PDF means, the uncertainty in 
model response, and accuracy of expected value of model response. 

In the presence of confidently determined test conditions, correlated 

sampling of N-dependent posteriors is advised, as they could closely 
replicate experimental data in most cases and were informed by all tests 
in each cycle number. For general use, uncorrelated sampling of the 
conflated PDF is advised, as point-estimate predictions achieved more 
accuracy than the values proposed by the original authors of the model, 
and it captures the uncertainty observed in MCMC. 

This work presented a probabilistic calibration framework for the 
HCA model which employed the same series of tests proposed by the 
model authors, although all parameters were estimated simultaneously, 
as opposed to sequentially. Accumulated strain histories from each test 
were considered without any type of normalization, which prevented 
the alteration of observed data. Moreover, the process for obtaining a 
single-value PDF can be extended to other datasets. This eliminates the 
need of N-dependent deterministic estimation and a later criteria-based 
unification of parameter values. Furthermore, N-independent parame-
ters in this work achieved similar-to-better results compared to the set of 
parameters proposed by the model authors, while providing a measure 
of the uncertainty in model response. 

Ultimately, we consider that the explicit-only approach presented in 
this work for probabilistic calibration of the HCA model was successful 
as it captured experimental data from a wide range of test conditions in a 
framework that is of low computational cost and mostly automated, 
making it suitable for academic and engineering practice. 
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Appendix A. Bayesian parameter estimation 

Bayesian inversion as implemented in this work, looks to infer a vector of model parameters θ defining a certain model class M, from a set of 
observed data yobs ¼ {yj,k / j = 1,.., Nobs, k = 1,..,Nout}, where Nobs is the number of observations and Nout is the number of points in each observation. 
From Bayes’ theorem, the posterior distribution for θ is defined by. 

P(θ|yobs) =
P(yobs|θ)P(θ)

P(yobs)
(A.1) 

Where P(θ|yobs) is the posterior distribution of θ, P(θ) is the prior distribution of θ, P(Yobs|θ) is the likelihood of M predicting Yobs through θ, and 
P(yobs) = P(yobs|M) =

∫∞
− ∞ P(yobs|θ)P(θ)dθ is the model evidence and normalizes the posterior such that it integrates to 1. 

These distributions combine the prior beliefs about the value of θ with the information inferred from the data through the likelihood function, 

which, if independence between observations is assumed, can be written as P
(
yobs|θ

)
=

∏Nobs
k=1P

(
yobs,k|θ

)
. In consequence, the posterior combines the 

likelihood inferred from experimental data with the prior beliefs about parameter values, effectively making the posterior an “updated” belief. It might 
be useful to consider different cases of prior distributions for this reason, including which provide more or less information about θ. 

From the likelihood function, it can be noted that the number of observations may have an impact on the posterior, associated with the variability 
between observations. For example, given that a larger number of observations implies a decrease in the marginal contribution of each observation to 
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the posterior, larger variability in the observations may result in a wider posterior. Therefore, an adequate dataset should be selected for updating, in 
order to make the most out of this framework. 

Usually, the likelihood of data is assumed to follow a normal distribution with a variance term σ2 referred to as model discrepancy. It represents the 
non-modeled sources of model error in M and the measurement noise. This term might be modeled as a random variable or considered constant. Again, 
it might be useful to assess the sensitivity of the posterior to model discrepancy. For example, a larger value of σ may be less restrictive towards 
posterior convergence, but at the same time return more uncertain predictions. 

In practice, an analytical approach is not feasible to solve the expression (A.1) for computer models, so a simulation approach is taken. To this end, 
Markov-Chain Monte Carlo (MCMC) is used in this work. Multiple chains are sampled from the posterior by proposing updates to the prior distri-
bution. At each step, the posterior distribution is evaluated on the proposed sample, with rejection criteria based on the model fit to the observed data. 
Multiple sampling algorithms are available for MCMC, in this work the Adaptive Metropolis algorithm (Haario et al., 2001) is used. Depending on the 
stochastic model (i.e., selection of priors, likelihood parameters, set of observations) the chains may or not satisfactorily converge to a stationary 
distribution in a number of steps. To assess the convergence of chains, the multivariate potential scale reduction (MPSRF) (Gelman & Rubin, 1992) is 
considered in this work. To assess the quality of the inference, the multi-chain effective sample size is considered and compared to the minimum 
effective sample size for a given confidence interval and Monte Carlo error (Vats et al., 2019). Bayesian estimation methods are employed in a wide 
range of geotechnical engineering applications, for example in (Astroza et al., 2017), (Rahimi et al., 2019), (Zheng et al., 2018), (Jin et al., 2021). 
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Liu, H.Y., Abell, J.A., Diambra, A., Pisanò, F., 2019. Modelling the cyclic ratcheting of 
sands through memory-enhanced bounding surface plasticity. Geotechnique 69 (9), 
783–800. 

Liu, H., Kementzetzidis, E., Abell, J.A., Pisanò, F., 2021. From cyclic sand ratcheting to 
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